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1.0   Objectives 

The objective of the effort as described in the proposal to DARPA/DSO was to identify 
and assess the primary technical barriers and risks that must be overcome to establish 
fast computational methods for uncertainty analysis in large models of interconnected 
components where the shape of system-level dynamics is essential. This objective was 
addressed through the following: 

1. Validate the technical hypothesis that measure-theoretic algorithms (for 
network congestion in large systems of interconnected model components) 
could be used to radically accelerate the numerical simulation, identification 
of dynamic stability boundaries, model reduction and propagation of 
uncertainty during product design. 

2. Apply preliminary results to selected challenge problem applications in (i) the 
design of organic molecules where shaping the conformational dynamics is 
essential to engineering their exploitable properties; and (ii) the control of 
afterburner combustion instabilities in gas turbine propulsion systems 
designed for advanced military aircraft. 

3. Champion advanced computational methods for the management of 
uncertainty in large, interconnected systems where the control of dynamics is 
essential. Engage international communities of experts in mathematics and 
engineering to sharpen and articulate an actionable, mathematically rigorous 
approach for the development oi Analytic Systems Engineering with the 
potential of broad impact on both the military and commercial sectors. 

Table 1 describes our results and accomplishments during the contract period on each of 
the required contract task elements designed to achieve these objectives. 

United Technologies Research Center Distribution statement A: Approved 
for public release; distribution unlimited. 



Table 1 - Task elements for contract F49620-03-C-0035 

Task Description Status 

Task A 
Establish the correct technical framework for model- 
based uncertainty analysis using the interconnection 
(graph) structure between components. 

Completed 
(see Publications 
5, 6, and 7) 

TaskB 

The analytical framework described in Task A will be 
used to access (i) the potential of the graph-theoretical 
methods for accelerating computational methods for 
estimating the propagation of uncertainty measure in 
interconnected model systems; and (ii) the technical 
obstacles and risks involved in designing, 
implementing, and testing numerical algorithms for 
model-based uncertainty management in the design of 
complex systems. 

Completed 

(i) Addressed in 
Publications 

5,6,7 

(ii) Addressed in 
Publications 3,4 

TaskC 

In collaboration with the DARPA/DSO program 
manager, specific model systems will be selected to 
investigate where the connection structure arises from 
the physical proximity between the subunits. The 
primary application domain will be the design and 
control of conformation dynamics in large organic 
molecules, although related problems will be 
considered. 

Addressed in 
Section 3.7.1 

and Publication 8 

TaskD 

In collaboration with the DARPA/DSO program 
manager, specific model systems will be selected to 
investigate where the connection structure arises from 
the virtual relationships between the subunits. This 
will be a model of combustion instability that occurs in 
the augmentor in a high performance gas turbine 
engine for advanced military aircraft. 

Addressed in 
Publication 2 

TaskE 

For the selected model systems selected in Tasks C-D 
above, we will establish the computational complexity 
bounds as they scale with model size (e.g., as size of a 
model protein length or with the number of coupled 
interacting modes in a combustion system). 

Addressed in 
part in Monte 

Carlo, 
Polynomial 

Chaos, and DNA 
work 

TaskF 

Host a DARPA/DSO sponsored Workshop involving 
recognized experts in various areas of Mathematics and 
Engineering to evaluate the state-of-the-art and 
potential for fast techniques supporting uncertainty 
analysis in large, multi-scale dynamical systems with 
applications in computational biology, design of 
advanced weapon systems and information technology. 

Completed 

Workshop held 
Jan.15-16, 2004 

at UTRC 
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2.0 Work Performed 

A multi-faceted effort into the propagation of uncertainty in complex networked systems 
was conducted. This effort included: 

1. Graph theoretic decomposition schemes for converting a large monolithic 
system of differential-algebraic equations into a collection of weakly coupled 
subsystems of strongly coupled equations. Computational benefits are 
achieved by solving less stiff systems in parallel. 

2. Spectral balance methods for large coupled limit cycling systems for 
applications in aeroengine augmentor instability control. 

3. Determination of density mapping techniques for propagation probability 
density functions through large systems of interconnected component models. 

4. Uncertainty propagation schemes utilizing polynomial chaos methods for 
nonlinear systems with nontrivial dynamics. 

5. Symmetry-breaking schemes, where we deliberately introduce spatial 
variations in the system parameters in order to change the stability properties. 

6. Uncertainty propagation in dynamical systems involved in computational 
chemistry and molecular modeling. 

7. DNA modeling, where we investigated dynamical systems where the 
connection structure arises from the physical proximity between the subunits. 

8. Uncertainty in the dynamics of conservative maps, focusing on the standard 
map and a discrete Duffing oscillator in R^. 

3.0 Accomplishments and New Findings 

In the paragraphs that follow, we detail the key technical work done in conjunction 
with this contract. The work touched on a number of seemingly diverse topics, that, 
when taken in their entirety, form the basis for an analytic understanding of uncertainty 
propagation through large, interconnected systems. 

3.1 Literature Search 

An extensive literature search was performed in the area of uncertainty propagation 
with emphasis on dynamical systems that can be modeled as interconnected structures. 
Information was gathered in the areas of large, multiscale, highly interconnected systems 
where dynamics plays an important role. Papers were identified covering graph theoretic 
methods to preserve structure dictated by the local dynamics. Papers on spectral methods 
for invariant measure computations in dynamical systems were collected. Monte Carlo 
methods were reviewed. Investigations of newer techniques such as polynomial chaos 
and stochastic finite element analyses were collected. Existing methods in molecular 
modeling were reviewed. Literature on methods of harmonic analysis and describing 
functions in control and dynamical systems were reviewed. A study of existing software 
products that purport capabilities in uncertainty propagation was done. Most such 
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products are in the area of reliability analysis and/or probabilistic optimization. A 
repository of all identified documents is being maintained and all documents are available 
to all members of the technical and programmatic team. 

3.2   Uncertainty Propagation 

Uncertainty analysis is a research topic that has received much attention in recent 
years. Increased use of physics-based models in the study of dynamical systems, in a 
wide range of applications, calls for model prediction analyses and quantification in 
terms of uncertainties in descriptions and operating environments. In this section we 
focus on several advanced methods for propagating and evaluating the effects of 
uncertainty in complex dynamical model parameters and their initial conditions. 

Polynomial Chaos (PC) (i.e. Stochastic Finite Elements) is an analytical approach 
based on expansions of uncertain quantities in terms of prescribed random basis 
functions. This methodology has received significant attention during recent years and 
has been applied to uncertainty propagation in complex dynamical systems, which are 
described by partial differential equation models. It has been demonstrated that for a 
certain class of problems arising in fluid mechanics, finite elements and/or chemical 
systems, PC can be considerably (up to several orders of magnitude) faster than Monte 
Carlo (MC) or similar methods. Furthermore, the analytical representation in the PC 
method can be of great benefit in system analysis. 

3.2.1  Monte Carlo Methods 

In the framework we proposed for uncertainty analysis of large nonlinear systems, 
the most important objects are invariant measures. These can always be computed using 
Monte Carlo methods, usually at a high cost. We studied application of Monte-Carlo 
methods in a set of dynamical systems with known asymptotic dynamics. Uncertain 
inputs and/or parameters were randomly sampled against some predetermined probability 
density functions and the model was run many times. A wide variety of sampling 
techniques were investigated, including pure random selection, randomized quasi-Monte 
Carlo techniques, and Latin hypercube methods. Approximately ten different probability 
density functions were identified to sample firom in order to allow for a generalized 
technique. Additionally, the importance sampling methods were investigated, as well as 
Markov chain Monte Carlo methods. 

It is well known that Monte Carlo methods, while guaranteed to work over the long 
run, are poorly suited to high dimensions (large numbers of uncertain inputs and/or 
parameters). Additionally, since numerous evaluations of the overall model are required, 
these methods suffer large penalties if the model evaluation is costly, either in time or in 
dollars. Finally, there is no appropriate way to allow the inherent structure induced on the 
problem by the physical nature of the problem to be useful in reducing the computational 
complexity. Monte Carlo techniques are the epitome of "black box" methods, were no 
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understanding of the model is used. Monte Carlo methods can be considered for lower 
dimensional base-line analyses, to measure improvements over other candidate 
approaches. Additionally, the method can be used in the cases when polynomial chaos 
expansion fails due to the compact nature of the asymptotic dynamics, to provide a 
simulation tool for measure propagation in localized dynamics. 

3.2.2 Polynomial Chaos 

In 1938, Wiener[l] investigated an approach he called "homogeneous chaos". This 
work was expanded by Ghanem and Spanos[2]. The idea is to project the variables of the 
problem onto a "stochastic space", spanned by a set of complete orthogonal polynomials 
that are functions of the random variables. The goal is to eliminate the large sample 
requirments of Monte Carlo methods, thereby dramatically reducing the computational 
requirement in the study of uncertainty propagation. 

In Wiener's original work, his random variables were assumed normally 
distributed, and he used the Hermite polynomials as his basis functions. Xiu and 
Kamiadakis[3] investigated alternative pairs of random variables and orthogonal 
polynomial basis functions, such as gamma distributed random variables with Laguerre 
polynomials. 

Our efforts focused on developing an analytical understanding of these methods and 
identifying the class of problems where they may show promise and classes of problems 
where polynomial chaos methods are not suitable for uncertainty propagation. We have 
studied a hierarchy of models starting from simple linear models with parametric 
uncertainty, to limit cycling models with additive noise. 

For a large class of smooth dynamical systems, these polynomial chaos methods are 
effective in markedly reducing the computational burden inherent in the Monte Carlo 
methods mentioned above. In our experience we have found two to three orders of 
magnitude reductions in computational effort. However, we have also found limitations. 
It was discovered, following earlier work by Kamiadakis, that polynomial chaos 
expansions can break down if the asymptotic dynamics resides on a compact attractor for 
all (compactly supported) uncertain parameter values. A solution to this is proposed to be 
the development of spectral element methods tuned to the asymptotic dynamics of the 
nonlinear system under study. In addition, multiscale spectral element methods could be 
used to provide multiscale uncertainty propagation methods. This way, the substantial 
speed-up achieved by polynomial chaos methods can be preserved for asymptotically 
compact uncertain attractors. In addition, the above described utilization of the graph 
structure of the problem is used to render polynomial chaos methods useful for a class of 
large networked systems, where a brute-force expansion might fail due to a large number 
of uncertain parameters. 

The truncated polynomial chaos expansion has a structure of an /^-dimensional 
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dynamical system, where TV^ is mxn, m is the dimension of the phase-space for the 
dynamical system under study and n is the order of truncation. We have proven some 
properties of the resulting dynamical system for the cases discussed above, hi particular, 
it can be shown that for a compact uncertain attractor, the polynomial chaos expansion 
asymptotically diverges due to the fact that the output measure has its density in a "bad 
space". 

References for this section: (Note: Each section has its own references, renumbered, 
starting at 1.) 

[1] Wiener, N., "The homogeneous chaos", Amer. J. Math., 60, pp. 897-936, 1938 
[2]  Ghanem, R., and Spanos, P., Stochastic Finite Elements: A Spectral ApproacK Springer-Verlag, 

New York, 1991. 
[3]  Xiu, D. and Kamiadakis, G.E., "The Wiener-Askey Polynomial Chaos for Stochastic Differential 

Equations", SIAMJ. Sci. Comp., Vol. 24, No. 2, pp. 619-644, 2002. 

3.2.3 Density Mapping 

Enhancing engineering performance and productivity through systematic and 
integrated designs that account for the effects of uncertainty is a key economic 
priority[l]. A unified paradigm, referred to as "Analytical Systems Engineering", recently 
formulated at the United Technologies Research Center, has identified uncertainty 
propagation through networks of nonlinear components as an essential component. This 
view is also echoed in [2] or in [3] (at the end of this secton), where large-scale, 
interconnected systems are designed using model-based techniques that employ 
uncertainty descriptions explicitly. Since all system models have varying levels of 
uncertainty [4], designers often use large safety margins, which result in more complex 
and expensive systems [5]. As a result, a natural path in modem systems design is to 
make decisions on the best system structure from the perspective of greater robustness to 
uncertainty. 

Before moving towards design, addressing uncertainty analysis in a model-based 
complex engineering systems framework is important. This has traditionally been 
addressed by Monte Carlo (MC) like methods. This classic approach (see [6]) employs a 
large number of simulations with a random selection of variables from their prescribed 
distribution (parametric or empirical). 

Unfortunately, uncertainty propagation techniques using MC methods, even in their 
advanced forms, do not scale well with system size. The natural choice in such cases is to 
break the large system into pieces. More precisely, the physics-based models, which are 
often converted to monolithic systems of uncertain nonlinear differential/algebraic 
equations, are to be decomposed using graph decomposition methods into subsystems 
evolving on different time scales, as mentioned in [7]. 
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We find that the time scale separation can be exploited to increase computational 
efficiency when propagating input uncertainty in a subsystem-by-subsystem manner. This 
approach has been also advocated in [8], where arbitrary interconnections of 
multivariable systems (represented either in a continuous or discrete form) with nonlinear 
or linear dynamics (nonlinear time varying, distributed linear time invariant or lumped 
linear time invariant) are decomposed into aggregate, strongly connected subsystems. 
Following this procedure each subsystem is addressed using "the minimum set 
technique" and transformed into a typical feedback interconnection. 

Alternatively, in [9], a Recursive Projection Method (RPM) is developed to solve 
nonlinear parameter problems for which the convergence is achieved for certain 
parameter values. The correction applied for divergent domains involves Newton's 
integration method. RPM provides reliable results, when the number of divergent modes 
is small comparative to the system's dimension. The algorithm has been successfully 
demonstrated on folds, bifurcations and unstable system branches. This approach is 
believed by its authors to greatly accelerate iteration convergence. 

Similarly, extensions from the backward Euler formula, conventionally used to 
obtain a system of nonlinear algebraic equations from an original system of nonlinear 
algebraic differential equations, can be grouped under the waveform relaxation (WR) 
method. This technique has been successfrilly employed in [10] to address large scale 
systems, such as integrated circuits. The iterative WR method decomposes the system in 
several dynamical subsystems, which are independently analyzed for the entire time 
interval. This method comes with sufficient convergence guarantees, also revealed in 
[10]. 

hi [11] graph theory is also used in the context of autocatalytic networks/sets to 
classify the uncertainty of the network and predict its influence over short and medium 
time-scales. Therefore, looking at how networks evolve with time, more precisely 
looking at their dynamics, it can be beneficial from a computation speed perspective. It is 
essential, when dealing with irreducible (i.e. strongly connected) graphs (e.g. dynamical 
subsystems), to perform related computations in corresponding time scales [12]. 

Finding a subset of the state space of a dynamical system where typical trajectories 
stay longer before entering different regions, conventionally called almost invariant sets 
[13], entitles a macroscopic behavior analysis of dynamical systems networks. In effect 
this separation permits individual sub-system uncertainty propagation studies. Algorithms 
for containment of such almost invariant sets are presented in [13]. 

To address slow convergence rate and clustering issues associated with Monte 
Carlo methods, new methods such as: polynomial chaos [14] (i.e. stochastic finite 
elements), stochastic surface response methods [15] and probabiUstic collocation 
methods [16] were used with significant success. Complementing these approaches, the 
propagation of uncertainty in the distribution of initial conditions for a network of 
dynamical systems can be studied in an exact manner using Liouville's equation as in 
[17]. 
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A bottleneck in the application of uncertainty propagation methods in a subsystem- 
by-subsystem way is associated with the existence of correlated signals due to typical 
parallel or feedback connections found in conventional subsystems. To address this issue, 
the propagation of uncertain inputs through interconnections of dynamical systems, with 
simple asymptotic behavior, was studied. The method of choice is a discrete density 
mapping, analogous to the input-output Perron-Frobenius operator. 

The advocated method assumes that a large system is broken into components, 
which evolve on different timescales or have simple attractor structure. Then, uncertainty 
propagation methods are used to map the input distribution through components and 
arrive at a stationary density for the states/outputs of interest. In a chain topology only the 
need for a transfer operator is observed. This is in contrast with the parallel connection, 
which adds complexity through the necessity of summing correlated signals. In the case 
of feedback structures this complexity is further augmented by the requirement for 
convergence of the iterations. 

An electronic version of this work in its full depth is included here. The same paper 
can be found in the appendix of the printed report and is entitled: Propagation of 
Uncertain Inputs Through Networks of Nonlinear Components. 

^ 

1- 
References for this section: 

[I] Helton, J.C, "Treatment of uncertainty in performance assessment for complex systems", Risk 
Analysis, vol. 14, no. 4, pp. 483-511, 1994. 

[2] Wojtkiewicz, S.F., Eldred, M.S., Field, R.V., et al., "Uncertainty quantification in large 
computational engineering models", AIAA-2001-1455 

[3]  Axelsson, J., "Model based systems engineering using a continuous-time extension of the unified 
modeling language (UML)", Systems Engineering, vol. 5, no. 3, pp. 165-179, 2002. 

[4]  Carlson, J.M., and Doyle, J.C, "Highly optimized tolerance: Robustness and design in complex 
systems". Physics Review Letters, vol. 84, no. 11, pp. 2529-2532, 2000. 

[5]  Sage, A.P., "Systems engineering: Purpose, function, and structure". The Journal of the 
International Council On Systems Engineering, vol. 1, no. 1, pp. 1, 1998. 

[6]  Friedel, I., and Keller, A., "Fast generation of randomized low discrepancy point sets:, in Monte 
Carlo and Quasi-Monte Carlo Methods 2000, H. Niederreiter, K. Fang, and F. Hickemell, eds., 
Springer, pp. 257-273, 2000. 

[7]  Strogatz, S.H., "Exploring complex networks". Nature, vol. 410, pp. 268-276, 2001 
[8]  Callier, F.W., Chan, W.S., and Desoer, C.A., "Input-output stability of interconnected systems 

using decompositions: An improved formulation", IEEE Transactions on Automatic Control, vol. 
23, no. 2, pp. 150-163,1978. 

[9]  Shroff, G., and Keller, H.B., "Stabilization of unstable procedures: The recursive projection 
method", SIAMJ. Numer. Anal, vol. 30, no. 4, pp. 1099-1120, 1993. 

[10]Lelarasmee, E., Ruehli, A.E., and Sangiovanni-Vincentelli, A.L., "The waveform relaxation 
method for time domain analysis of large scale integrated circuits", IEEE Trans. On CAD ofIC 
andSyst, \ol l,pp. 131-145, 1982. 

[II] Jain, S., and Krishna, S., Graph Theory and the Evolution of Autocatalytic Networks, chap. 16, 
Wiley-VCH, 2002. 
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[12]Vidyasagar, M., Input-Output Analysis of Large-Scale Interconnected Systems: Decomposition, 
Well-Posedness & Stability, Springer-Verlag, 1981. 

[13]Froyland, G. and Dellnitz, M., "Detecting and locating near-optimal almost-invariant sets and 
cycles", Society for Industrial and Applied Mathematics, vol. 24, no. 6, pp. 1839-1863, 2003. 

[14] Ghanem, R., and Spanos, P., Stochastic Finite Elements: A Spectral Approach, Springer, New 
York, 1991. 

[15]Isukapalli, S.S., Uncertainty Analysis of Transport-Transportation Models, Ph.D. thesis, Rutgers 
University, 1999. 

[16]Tatang, M.A., Direct Incorporation of Uncertainty in Chemical and Environmental Engineering 
Systems, Ph.D. thesis, Massachusetts Institute of Technology, 1995. 

[17]Ehrendorfer, M., "The Liouville equation in atmospheric predictability". Proceedings ECMWF 
Seminar on Predictability of Weather and Climate, pp. 47-81, 2003. 

3.3   Graph Decomposition 

Complex physical systems often possess an inherent structure from which they 
derive the robustness of their behavior. For example, the DNA molecule has a strong 
backbone structure that allows global modes [1] and gene regulatory networks have a 
hierarchical structure that allows complex gene expressions [2]. Similarly, in complex 
engineering systems such as coordinated group of vehicles, sensor and communication 
networks are designed by interconnecting subsystems in a systematic manner. There is 
significant interest in robust design methods for complex, interconnected dynamical 
systems. The design of such systems can be significantly accelerated by using models for 
robustness assessment and redesign. This requires understanding how uncertainty in 
various parameters and the system model itself affects the model outputs. Computational 
methods such as Monte-Carlo, polynomial chaos and various modifications of these can 
be used to propagate probabilistic information from the inputs/parameters to the outputs 
of a static or dynamical system. Unfortunately, the computational effort for these 
methods scales poorly with system complexity and there is a strong need for efficient 
alternatives. A promising direction is the decomposition of a complex system using graph 
theoretic methods followed by block-by-block propagation with iterations when 
necessary. 

Graph theoretic methods are used widely in control theory [3], computer science, 
and network systems. More recently, graph theoretic techniques have been employed in 
conjunction with set oriented numerical methods for computing the almost invariant sets 
of dynamical systems [4]. There is a close connection between Markov chain theory and 
graph theory [5]. We refer the reader to standard text books and/or review papers such as 
[6], [7] for basic notions from algebraic graph theory and graph algorithms such as 
spanning and induced subgraphs, cycles, connectedness of undirected graphs, strongly 
connectedness and topological sorting of directed graphs, adjacency, incidence and 
Laplacian matrices, the significance of the eigenvalues of these matrices, reducibility and 
irreducibility of the adjacency matrix, depth first search and breadth first search. 

The aim of this effort was to introduce graph theoretic methods for decomposing a 
complex dynamical system into hierarchically and/or weakly connected subsystems for 
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the purpose of uncertainty propagation in systems. The structure resulting from graph 
decomposition with series, parallel or feedback connections among subsystems can be 
exploited for efficient methods for computation of uncertainty propagation [8]. hi the 
paper included here (electronic version, and in the appendix in the print version of this 
report), entitled: Graph Decomposition Methods for Uncertainty Propagation in 
Complex, Nonlinear Interconnected Dynamical Systems, we briefly review a structural 
decomposition algorithm [3], [9] which employs the so-called equation graph of a 
dynamical system and identifies the subsystems and the associated hierarchy. 

References for this section: 

[1] Mezic, I., "DNA clues for design of robust, flexible networks", UCSB preprint, 2004. 
[2]  Stark, J., Callard, R., and Hobank, M., "From the top down: Towards a predictive biology of 

signaling networks," Trends in biotechnology, vol. 21, pp. 290-293, 2003. 
[3]  Callier, F.M., Chan, W.S., and Desoer, C.A., "Input-output stability theory of interconnected 

systems using decomposition techniques," IEEE Transactions on Circuits and Systems, vol. 23, 
no. 12, pp. 714-729, 1976. 

[4]  Dellnitz, M., and Preis, R., Symbolic and Numerical Scientific Computation, ser. Lecture Notes in 
Computer Science, 2630. Springer, 2003, ch. Congestion and almost invariant sets in dynamical 
systems, pp. 183-209. [Online]. Available: http://mathwww.upb.de/ 
agdellnitz/papers/congestion.ps.gz 

[5]  Jarvis, J.P., and Shier, D.R., Applied Mathematical Modeling: A Multidisciplinary Approach. CRC 
Press, 1999, ch. 17. Graph-Theoretic Analysis of Finite Markov Chains, pp. 271-289. 

[6]  Godsil, C, and Royle, G., Algebraic Graph Theory. Springer, 2001. 
[7]  Merris, R., "Laplacian matrices of graphs: A survey," Linear Algebra and Its Applications, vol. 

197-I98,pp. 143-176, 1994. 
[8]  Huzmezan, M., and Kalmar-Nagy, T., "Propagation of uncertain inputs through networks of 

nonlinear components," in Proc. of the IEEE CDC, Bahamas, December 2004, (submitted). 
[9]  Mezic, I., "Coupled nonlinear dynamical systems: Asymptotic behavior and uncertainty 

propagation," 2004, submitted to CDC 2004. 

3.4   Spectral Balance 

Many industrial flows involve complex interactions of acoustic waves, vorticity, 
friel transport, and chemical reactions. The control objective often is to create beneficial 
non-equilibrium dynamics with control. Examples include control of flow separation and 
mixing enhancement. Our effort here focused on a frequency domain framework for 
analysis and non-equilibrium control design for a large class of models of physical 
phenomena involving multiple oscillatory modes coupled through nonlinear terms and/or 
transport delay, that are driven by broad-band disturbances. While motivated by specific 
problems arising in military aeroengines, the methods developed are applicable to a large 
class of distributed dynamical systems involving oscillatory dynamics with nonlinear 
cross-coupling, saturated nonlinearities, transport delay, and broad-band disturbances. 
The spectral balance framework that we developed generalizes the standard harmonic 
balance and Gaussian signal balance in feedback systems [1], [2]. The framework was 
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introduced and illustrated in an example of a nonlinear system that exhibits noise-induced 
transitions between two stable equilibria. The example presented was a scalar model with 
cubic nonlinearity after a pitchfork bifiarcation driven by a broad-band disturbance. An 
approximate and iterative spectral balance of the constant and broad-band signals 
(including determination of equilibria) was solved. The solution of this approximate 
spectral balance was used to reformulate the original model using a loop transformation 
so that an iterative procedure for finding the spectrum of the output converges to the true 
spectrum. 

An electronic version of this work in its fiall depth is included here. The same paper 
can be found in the appendix of the printed report and is entitled: Spectral balance: A 
frequency domain framework for analysis of nonlinear dynamical systems. 

References for this section: 

[1]  Mees, A.I., "Describing functions: Ten years on", IMA J. Applied Mathematics, vol. 32, pp. 
221-233, 1984 

[2]  Gelb, A., and Vender Velde, W.E., Multiple-Input Describing Functions and Nonlinear 
Systems Design, McGraw-Hill, 1968. 

3.5   Convergence 

Robust design of complex, interconnected systems requires efficient computational 
methods for uncertainty propagation. Knowledge of the probability distribution fimction 
(pdf) of key output variables derived from the knowledge of input variables enables 
better decision making during design. Existing methods for propagation of uncertainty 
such as Monte-Carlo, polynomial chaos and stochastic surface response methods scale 
poorly with problem size and are computationally very demanding for complex systems 

In order to overcome the barrier of computational effort, a new approach based on 
decomposition of complex systems has been emerging as a promising direction. Li this 
approach, a complex system is first decomposed using graph theoretic methods into 
subsystems connected in series, parallel or feedback [2]. Then, a block-by-block 
propagation is performed accounting for the dependencies among variables [3]. Such a 
method exploits the underlying hierarchical structure of a complex system and provides 
the flexibility to use different methods for different subsystems of the original system. 

Feedback loops at the system level, or encompassing a large number of subsystems, pose 
a significant risk to the block-by-block fi-amework since the structural decomposition 
methods described in [2] identify the feedback loops as a single subsystem. The 
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decomposition method based on the Jacobian value and the associated graph Laplacian, 
also described in [2], can identify weak feedback connections only. However, moderate 
to strong feedback due to a controller is common in many engineering systems. The 
ability to propagate uncertainty through such feedback loops block-by-block without 
having to solve the closed loop system in entirety is very attractive. Thus, there is a need 
for alternative approaches to speeding up the computation for uncertainty propagation in 
feedback systems. 

In this work, we developed an iterative method to compute the probability density 
function of the output of a feedback loop from the probability density function of the 
input. We derived the problem setup and formulated the iteration equations by abstracting 
a computational scheme conceived and implemented by Huzmezan and Kalmar-Nagy 
[3]. We proved the point-wise convergence of the iteration to the true closed loop 
probability density function under the assumption that the loop operator was contractive. 

Additionally, we considered the case where there is additional parametric uncertainty in 
the loop operator. We showed that the problem could be cast as a system of iterated 
random functions. Based on the results in [4,5], we claim that the iteration converges to 
the solution of the closed loop probability density function under the assumption that the 
loop operator is contractive on an average. The proof of this claim and extension to 
dynamic systems will be considered in future work. 

An electronic version of this work in its full depth is included here. The same paper 
can be found in the appendix of the printed report and is entitled: An Iterative Method for 
Propagation of Probability Distributions in Feedback Systems. 

References for this section: 

[1]  Runolfsson, T., Mezic, I., and Myers, M., "Uncertainty analysis of dynamical systems," in Proc. 
of the SIAM Conf. on Application of Dynamical Systems, 2003. 

[2]  Varigonda, S., Kalmar-Nagy, T., LaBarre, B., and Mezic, I., "Graph decomposition methods for 
complex, interconnected dynamical systems," in Proc. of the IEEE CDC, Bahamas, 2004, 
(submitted). 

[3] Huzmezan, M., and Kalmar-Nagy, T., "Propagation of uncertain inputs through networks of 
nonlinear components," in Proc. of the IEEE CDC, Bahamas, December 2004, (submitted). 

[4] Diaconis, P., and Freedman, D., "Iterated random functions," SIAM Review, vol. 41, pp. 45-76, 
1999. 

[5]  Jamer, S.F., and Tweedie, R., "Locally contracting iterated functions and stability of markov 
chains," J. Appl. Prob., vol. 38, pp. 494-507, 2001. [Online]. Available: 
http://www.maths.lancs.ac.uk/jamer 
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3.6   Conservative Systems 

This work studied the effect of uncertainty, using random perturbations, on area 
preserving maps of R" to itself The focus was on the standard map and a discrete 
Duffing oscillator in R^ as specific examples. We related the level of uncertainty to the 
large-scale features in the dynamics in a precise way. We also studied the effect of such 
perturbations on bifurcations in such maps. The main tools used for these investigations 
was a study of the eigenfunction and eigenvalue structure of the associated Perron- 
Frobenius operator along with set oriented methods for the numerical computations. 

Uncertainty is obviously of central importance for dynamic and control systems 
both fi-om a theoretical and a practical point of view. While this topic has received much 
attention in the control community, there is still much to learn about the effect of random 
perturbations on such systems. This work focused our attention on perturbations of 
conservative system as a first step towards studying mechanical systems (including 
molecular systems) in the presence of uncertainty. An important aspect of our approach 
was to try to extract the key dynamical features that survive in a noisy environment. One 
can make the case that such features are the most important ones to compute. 

An electronic version of this work in its fixll depth is included here. The same paper 
can be found in the appendix of the printed report and is entitled: Uncertainty in the 
Dynamics of Conservative Maps. 

This work showed that one could effectively use the theory and computation 
associated with the Perron-Frobenius operator to study the effect of uncertainty on area 
preserving maps and illustrated the methods on the standard map and the discrete Duffing 
oscillator. The level of uncertainty was related in a quantitative way to the large-scale 
features, often ones that are the most important to compute. This work also studied the 
way in which uncertainty affects the bifurcation of such maps. 

3.7   Applications 

3.7.1  DNA 

We investigated the dynamics of DNA molecules using a coarse-grained model 
presented in [1]. hi particular we analyzed the robustness of the beneficial DNA 
dynamics with respect to uncertainty in the model parameters and the initial conditions. It 
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was found that the DNA model shows a remarkable robustness of the beneficial 
dynamics to uncertainty in model parameters and the initial conditions. The beneficial 
behavior enables coding of the genetic material and involves a synchronous behavior of 
the molecules. 

Reference for this section: 

[1] Yakushevich, L.V., Savin, A.V., and Manevitch, L.I., "Nonlinear dynamics of topological solitons 
in DNA," Physical Review E 66, 016614, 2002. 

3.7.2 Molecular Models 

We summarize the efforts made in the following three areas of molecular modeling 
in the context of uncertainty analysis: 

(a) We have identified systems in molecular mechanics for conformational analysis by 
classical molecular dynamics. The globally optimum configuration is subject to 
uncertainty in the inter-atomic potential. We propose to test polynomial chaos on 
classical molecular dynamics calculations on the nitrogen molecule and the more 
complicated trimer molecule CS2. 

(b) We have been studying the quantification of uncertainty in classical and quantum 
molecular dynamics theories in relation to property predictions in molecular systems. 
These theories involve the simulation of dynamical systems in time that may cover 
such processes as bond-breaking, bond-formation, chemical reaction, and diffusion. 
These theories are general but our ultimate application targets are in such areas as 
proton diffusion in PEM fuel cell membranes and hydrogen absorption in metal- 
hydride materials for hydrogen storage. A fundamental issue is uncertainty 
propagation in these dynamical systems. The uncertainty arises in parameters 
pertaining to the semi-empirical force-fields if classical molecular dynamics are used; 
this can affect the accuracy of transport properties, such as diffusivity, estimated by 
molecular dynamics. We have identified this issue as a first problem to be rigorously 
analyzed by polynomial chaos methods. We plan to compute the errors in the 
diffusivity obtained from classical molecular dynamics calculations subject to random 
errors in the parameters comprising the functional form of the inter-atomic potential. 
We plan to start with a simple Lennard-Jones system with uncertainty in the collision 
diameters and the well- depths and propose to extend the study to cover more 
sophisticated potentials for metal-ceramics of interest to UTC and solid-oxide fuel 
cells within the context of polynomial chaos. 

(c) When molecular modeling calculations are done at a more fundamental level (e.g., 
Hohenberg-Kohn density functional theory at the electronic level) there is the 
uncertainty in the form of the exchange- correlation functional. Despite forty years of 
density functional theory, the local density approximation and the generalized 
gradient approximations are the only parameterizations available for the exchange 
correlation functional. We know that these are not satisfactory for instance in the 
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accurate calculations of cohesive energies, reaction barrier heights etc. The 
application of polynomial chaos to study uncertainty propagation due to the exchange 
correlation functional is an excellent idea. But, it cannot be done without an 
understanding of the uncertainty in the density functional. We propose to consider 
using the semi-empirical density functionals that the chemists have constructed by 
fitting a guessed at form with parameters to the results of configuration-interaction 
computations for small molecular systems. This can be taken as a standard for 
comparisons. Then the various physically motivated functionals would deviate from 
that standard, and one could study the propagation of those deviations through the 
Car-Parrinello quantum dynamics computation. This area is of interest to UTC as 
Car-Parrinello calculations are used in hydrogen storage calculations and in the 
calculation of chromia ion migration in the cathodes of solid oxide fuel cells. 

An electronic version of this work in its full depth is included here. The same paper 
can be found in the appendix of the printed report and is entitled: Dynamics in Molecular 
Modelling and the Scope for Uncertainty Analysis by Dellnitz-Preis and Polynomial 
Chaos Methods. 

3.7.3 Aeroacoustics 

For this application we studied a thermo-acoustic model on a cylindrical or annular 
geometry, capable of modehng instabilities of tangential acoustic modes. The model 
accounts for nonuniform density, damping, rotational flow, and heat-release coupling. It 
is shown that deliberately introducing spatial variations in some quantities has a similar 
effect to adding damping to the system. The effects of these symmetry-breaking concepts 
are evaluated on the model through linear analysis and the net amount of additional 
damping is computed. We show how various symmetry-breaking concepts are robust 
with respect to the uncertainty in the model parameters and we examine propagation of 
uncertainty with respect to a recently defined measure of uncertainty. 

Thermo-acoustic instabilities in gas turbine and rocket engines develop when 
acoustic waves in combustors couple with an unsteady heat-release field in a positive 
feedback loop. For a summary of active control of thermo-acoustic instabilities see [3]. 
Thermo-acoustic modeling and control is well-studied for axially extended combustion 
chambers, as in [5], [7], [14], [10], where the acoustic to heat release coupHng is 
dominated by longitudinal acoustic modes. However, comparably less attention has 
focused on thermo-acoustic modeling in combustion chambers with annular or cylindrical 
geometries. Our efforts for the aeroacoustic application focused on the development a 
low-order thermo-acoustic model on a circular geometry, similar to that of [1]. 
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Often thermo-acoustic instabilities are dominated by a few natural acoustic modes, 
which can accurately be modeled with a low-dimensional model. Accurate heat-release 
models are difficult and time-consuming to implement. A low-order thermo-acoustic 
model, properly calibrated with acoustic data, can provide insight into the possibly 
deleterious acoustic-heat-release coupling and may provide a platform for fast evaluation 
of preliminary design concepts. 

We began be defining symmetry-breaking as the deliberate introduction of spatial 
variations in the system parameters in order to change the stability properties. Recent 
work has focused on analysis of heterogeneous distributed systems [6],[9],[11]. 
Symmetry-breaking is commonly referred to as mistuning in the literature regarding the 
dynamics of arrays of turbine blades on a disk. Studies of stability properties of turbine 
blade flutter through the introduction of spatial nonuniformities has appeared in [2], [16]. 
Optimal mistuning in arrays of bladed disks has appeared in [15], [17]. A study of the 
effects of asymmetry on compressor stall inception has appeared in [8]. 

As in the case of mistuning in arrays of bladed disks in turbines, this form of 
passive control is often more feasible than implementing an active control scheme. This 
may also be true for the case in combustion chambers, where high temperatures prohibit 
adequate sensing and may damage the actuators required for active control. Furthermore, 
We have found that symmetry-breaking can be a more cost-effective means of stability 
enhancement. 

An electronic version of this work in its full depth is included here. The same paper 
can be found in the appendix of the printed report and is entitled: Symmetry-Breaking 
and Uncertainty Propagation in a Reduced Order Thermo-acoustic Model. 
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Electronic version of the program is included here. The program is 
also included in the appendix of the printed report. 

4.   43"* IEEE Conference on Decision and Control, December 2004. 

(b) Advisory Functions 

None 

(c) Transitions 

The symmetry breaking concepts to reduce sensitivity of 
dynamical systems to uncertainty developed under this contract were 
applied in two internally funded projects to investigate design of 
aeroengine combustors robust to thermoacoustic instabilities. 

Using advanced mathematical concepts developed for uncertainty 
propagation through dynamical systems UTRC and PW are currently 
looking at validation and verification (V&V) of model based controllers 
for life extension of hybrid systems such as gas turbines. 
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Abstract—Physics based models are often converted 
to monolithic systems of uncertain nonlinear differen- 
tial/algebraic equations. Graph decomposition methods can 
be used to decompose such system into subsystems evolv- 
ing on different time scales. This time scale separation 
can be exploited to increase computational efficiency when 
propagating input uncertainty in a subsystem-by-subsystem 
manner. In this paper the propagation of uncertain inputs 
through series, parallel and feedback interconnections of dy- 
namical systems with simple asymptotic behavior is studied 
by employing discrete density mapping (analogous to the 
input-output Perron-Frobenius operator). A process con- 
trol example is used to illustrate the method. 

Index Terms—Perron-Frobenius, Density Mapping, Un- 
certainty Propagation, Networks of Dynamical Components 

I. INTRODUCTION 

Enhancing engineering performance and productivity 
through systematic and integrated designs that account 
for the effects of uncertainty is a key economic prior- 
ity [1]. A unified paradigm, the "analytical systems en- 
gineering", recently formulated at the United Technolo- 
gies Research Center, has identified uncertainty propaga- 
tion through networks of nonlinear components as an es- 
sential component. This view is also echoed in [2] or in 
[3], where large-scale, interconnected systems are designed 
using model-based techniques that employ uncertainty de- 
scriptions explicitly. Since all system models have varying 
levels of uncertainty [4], designers often use large safety 
margins, which result in more complex and expensive sys- 
tems [5]. As a result, a natural path in modern systems 
design is to make decisions on the best system structure 
from the perspective of greater robustness to uncertainty. 

Before moving towards design addressing uncertainty 
analysis in a model-based complex engineering systems 
framework is important. This has been traditionally been 
addressed by Monte Carlo (MC) like methods. This classic 
approach (see [6]) employs a large number of simulations 
with a random selection of variables from their prescribed 
distribution (parametric or empirical). 

Unfortunately, uncertainty propagation techniques using 
MC methods, even in their advanced forms, do not scale 
well with system size. The natural choice in such cases is 
to break the large system into pieces. More precisely, the 
physics based models, which are often converted to mono- 
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lithic systems of uncertain nonlinear differential/algebraic 
equations, are to be decomposed using graph decomposi- 
tion methods into subsystems evolving on different time 
scales, as mentioned in [7]. 

In the authors' view the time scale separation can be 
exploited to increase computational efficiency when prop- 
agating input uncertainty in a subsystem-by-subsystem 
manner. This approach has been also advocated in [8], 
where arbitrary interconnections of multivariable systems 
(represented either in a continuous or discrete form) with 
nonlinear or linear dynamics (nonlinear time varying, dis- 
tributed linear time invariant or lumped linear time invari- 
ant) are decomposed into aggregate, strongly connected 
subsystems. Following this procedure each subsystem is 
addressed using "the minimum set technique" and trans- 
formed into a typical feedback interconnection. 

Alternatively, in [9], a Recursive Projection Method 
(RPM) is developed to solve nonlinear parameter problems 
for which the convergence is achieved for certain parame- 
ter values. The correction applied for divergent domains 
involves Newton's integration method. RPM provides reli- 
able results, when the number of divergent modes is small 
comparative to the system's dimension. The algorithm has 
been successfully demonstrated on folds, bifurcations and 
unstable system branches. This approach is believed by its 
authors to greatly accelerate iteration convergence. 

Along the same thinking path, extensions from the back- 
ward Euler formula, conventionally used to obtain a system 
of nonlinear algebraic equations from an original system of 
nonlinear algebraic differential equations, can be grouped 
under the waveform relaxation (WR) method. This tech- 
nique has been successfully employed in [10] to address 
large scale systems, such as integrated circuits. The iter- 
ative WR method decomposes the system in several dy- 
namical subsystems, which are independently analyzed for 
the entire time interval. This method comes with sufficient 
convergence guarantees, also revealed in [10]. 

In [11] graph theory is also used in the context of au- 
tocatalytic networks/sets to classify the uncertainty of the 
network and predict its influence over short and medium 
time-scales. Therefore, looking at how networks evolve 
with time, more precisely looking at their dynamics, it can 
be beneficial from a computation speed perspective. It is 
essential, when dealing with irreducible (i.e. strongly con- 
nected) graphs (e.g. dynamical subsystems), to perform 
related computations in corresponding time scales [12]. 

Finding a subset of the state space of a dynamical system 
where typical trajectories stay longer before entering differ- 
ent regions, conventionally called almost invariant sets [13], 



entitles a macroscopic behavior analysis of dynamical sys- 
tems networlcs. In effect this separation permits individual 
sub-system uncertainty propagation studies. Algorithms 
for containment of such almost invariant sets are presented 
in [13]. 

To address slow convergence rate and clustering issues 
associated with Monte Carlo methods, new methods such 
as: polynomial chaos [14] (i.e. stochastic finite elements), 
stochastic surface response methods [15] and probabilistic 
collocation methods [16] were used with significant suc- 
cess. Complementing these approaches, the propagation 
of uncertainty in the distribution of initial conditions for a 
network of dynamical systems can be studied in an exact 
manner using the Liouville's equation as in [17]. 

A bottle neck in the application of uncertainty propaga- 
tion methods in a subsystem-by-subsystem way is associ- 
ated with the existence of correlated signals due to typical 
parallel or feedback connections found in conventional sub- 
systems. To address this issue, in this paper, the propa- 
gation of uncertain inputs through interconnections of dy- 
namical systems, with simple asymptotic behavior, is stud- 
ied. The method of choice is a discrete density mapping, 
analogous to the input-output Perron-Probenius operator. 

The advocated method assumes that a large system 
is broken into components, which evolve on different 
timescales or have simple attractor structure. Then, uncer- 
tainty propagation methods are used to map input distri- 
bution through components and arrive to a stationary den- 
sity for the states/outputs of interest. In a chain topology 
only the need for a transfer operator is observed. This is in 
contrast with the parallel connection, which adds complex- 
ity through the necessity of summing correlated signals. In 
the case of feedback structures this complexity is further 
augmented by the requirement for converge of the itera- 
tions. 

Following the introduction. Section II makes reference 
to chains, parallel and feedback connections which are ap- 
proached with the density mapping method described in 
Section III. In Section III B convergence guarantees are 
addressed. To illustrate the method an industrial process 
control example abstraction is offered in Section IV. The 
conclusions are stated in Section V. 

II. SIGNAL FLOW DECOMPOSITION: CHAINS, PARALLEL 

AND FEEDBACK CONNECTIONS 

The starting assumption for the uncertainty propaga- 
tion method application is that a nonlinear system under 
investigation is broken into interconnected components. 

In this ease the simplest topology that can arise is a 
chain, as shown in Figure 1. In this case the output of a 
block serves as input to the following block. If the input- 
output maps /i, /2, ... are known for all blocks, then 
the output of the chain can simply be calculated as the 
composition of these maps /i o/go... acting on the input of 
the first block. To consider uncertain inputs, it is necessary 
to extend the notion of single input-output mapping to 
probability densities. The resulting formalism, analogous 
to the Perron-Probenius operator is discussed below. 

CD- -Kl 

Fig. 1.   Density propagation through chains 

Fig. 2.   Parallel summation 

The computational advantage of propagating input den- 
sities in a block-by-block manner, which corresponds to the 
composition of maps, becomes clear when the dynamics 
of different blocks include completely different timescales. 
Complications arise when considering a parallel connec- 
tion, see Figure 2. In this case, the resulting probability 
densities (output uncertainties) have to be summed. For 
densities of independent random variables, this operation 
would be a simple convolution. However, when these densi- 
ties are dependent, correlation information should be used 
to sum them correctly, fact also discussed in the next sec- 
tion. 
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Fig. 3.   Feedback loop with loop operator G 

Finally, the feedback connection, shown in Figure 3, can 
be thought of as infinite series of parallel connections for 
which the convergence aspects are discussed in Subsec- 
tion B. 

III. THE DENSITY MAPPING METHOD 

The paper proposes a simple algorithm that can be used 
to propagate input uncertainty through nonlinear compo- 
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ncnts. While this algorithm can be thought of as a simple 
implementation of the Perron-Frobenius operator [18], it 
has been extended to account for the mapping of the dis- 
tribution support (akin to ccll-to-cell mapping [19]). This 
extension was necessary to enable operations with corre- 
lated densities (e.g. parallel or feedback loop connections). 

To understand the proposed technique first we review 
the Perron-Probcnius operator of a scalar map in the con- 
text of the proposed input-output uncertainty mapping. 
The one-dimensional map: 

Un+l = / (Wn) (1) 

corresponds to the action of a block upon Un, the system 
input. This action results by applying on u„ the mapping 
corresponding to the asymptotic dynamics of the system / 
and has as result Un+i, the output. The uncertainty of u„ 
will be represented by its probability density G. Therefore 
the map has a corresponding Perron-Frobenius operator U 
acting on G: 

Gn+i = UGn =    /"j (W - / (x)) Gn {x) dx = 

= E Gn ifa' JU)) 

^ I/' (/"'(«)) I 
(2) 

where the summation should be taken over all inverse 
branches f~^ [u). 

G(U) 

Fig. 4.   Density mapping 

In the following a straightforward numerical implemen- 
tation of this mapping is described. Taking a cell-based 
approximation of the input probability density (histogram) 
{(TJ, Tj+i), Gi} with cell-width w a collection of rectangles 
(bins) is produced. Consecutively the mapping / is ap- 
plied to the corner points of all rectangles. Their resulting 
heights are derived from the density conservation condi- 
tion. This procedure yields a new set 

{{f{Ti)J{Ti+l)),hi} hi = 
GiW 

\f in) - f (Ti+i) 
(3) 

If the map / is many-to-one, this collection will contain 
overlapping rectangles. 

The overall output density can be produced by 're- 
binning', a procedure which involves finding the total area 

over a bin on the support of the resulting distribution 
[min / (TJ) , max / (r,)]. This corresponds to summing over 
the inverse branches of the map. Re-binning is useful when 
propagating densities in a system with chain topology. On 
the other hand, re-binning destroys information about the 
mapping of the original support into the support of the out- 
put in the same fashion as polynomial chaos methods. This 
information is crucial when dealing with densities mapped 
through parallel or feedback connections. 

A. Summing Correlated Probability Densities 

Consider the parallel connection shown in Fig- 
ure 2. At the summing junction we have two lists 
{{fi{xi),fi{xi+i)),hi}, {{f2{xi),f2{xi+i)),hi} pro- 
duced from the same input density G. Note that the lists 
contain the same hi's, because of the density conserva- 
tion. Consequently, to produce the parallel structure out- 
put density, the sum of these lists are then taken as 

{(/i (Xi), h {Xi+i)), hi} e {(/2 {Xi), h {xi+i)), hi] = 

= {(/i [xi) + h {xi), /i [xi+i) + h (a^i+i)), hi) (4) 

This represents the list produced by the simple application 
of the operator /i -I- /2 to the original density. 

B. Feedback Loop: Convergence Issues 

As discussed the feedback connection represents a natu- 
ral extension of dealing with the summation of correlated 
signal density functions. Obtaining the feedback signals 
involves a summation of a set-point, generally, with a pro- 
cessed feedback signal that has been generated as a result 
of that set point. Propagating densities instead of signals 
through the loop is facilitated by keeping track of the un- 
certainty propagation in terms of density lists. For com- 
putation purposes a finite number of iterations is expected 
before convergence is realized. To minimize the compu- 
tational load management of the bin size for the original 
distribution is required. Under such conditions the sav- 
ings obtained are significant, i.e. two orders of magnitude 
smaller versus traditional methods such as Monte Carlo. 

A rigorous proof for the convergence of the iterative 
scheme proposed is offered in [20]. For completeness a 
sketch of the proof is presented here for feedback systems 
falling under the class presented in Figure 3 for which u is 
the input, x the internal signal and y = fx, where / is an 
operator, the output. 

The above signals have associated corresponding prob- 
ability density functions (pdf) (i.e. for u the pdf is Gu). 
Applying the Perron-Probenius theorem on the closed loop 
relation a; = (/ — f)~^u, the pdf of x, Gx, can be written 

Gx=Gu{{I-f)x)\I-df\ (5) 

where df is the derivative of / and | • | denotes the absolute 
value of the determinant. The proof developed in [20] 
shows that a sequence iteration for Gx converges to the 
closed loop expression in Eq 5, which is the correct closed 
loop solution. 
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Fig. 5.   Typical process control structure and its corresponding asymptotic map 

Note that the operator / can be nonlinear. Also note 
that, as presented in [20], the multidimensional generaliza- 
tion of this computational method is possible. 

C. Benefits of a Block-by-block Propagation in a Multi 
Time Scale System 

Another benefit of using the proposed approach is re- 
vealed in a multi time scale system. For such n-equation 
system a simple calculation can quantify the computational 
benefits. 

Assuming that to compute the solution of one equation 
requires (in average) k operations and assuming that the 
step-size required to resolve the fastest timescale is di/ast 
it results that to integrate the system to tfinai requires 
approximately n x k x ^^'""'^ steps. Further, assuming 

an overall system decomposition into 10 subsystems, with 
fastest timescale dtjast separated. The number of oper- 
ations required to integrate this system is approximately 
■^xnxkx *^'"°', which represents an order of magnitude 

computation speed up. 

IV. PROCESS CONTROL EXAMPLE 

Well acclaimed techniques steaming from robust control 
theory such as ifoo loop-shaping or fj, analysis and synthe- 
sis are considering, in general, worst case scenarios and do 
not use, most of the time, existent additional information 
(i.e. probabilistic knowledge) about uncertainty. As shown 
in this paper, a direct characterization of uncertainty is a 
possible and useful alternative. Using this approach, for a 
control systems framework, is a useful exercise, which can 
be further generalized to complex networks of dynamical 
components. The example for uncertainty propagation has 
been generated through the abstraction of a typical indus- 

trial controls closed loop. This process control structure, 
see Figure 5, involves: inner control loops, feedforwards 
and outer control loops. 

Using the developed tools to understand how input 
uncertainty propagates through this network of dynami- 
cal components requires each component's nonlinear map. 
These maps can be extracted from the asymptotic behavior 
of the individual nonlinear dynamic subsystem. 

Therefore, the network structure, also displayed in Fig- 
ure 5, is captured through steady state models displaying 
series, parallel and feedback interconnections of nonlinear 
components. 

Recall that the density mapping method operates in 
terms of density lists, which once mapped through a block 
are constructing other lists. This procedure replaces tradi- 
tional signal propagation through blocks. The interconnec- 
tions of the overall system, first decomposed in standard 
building blocks, are represented with in a similar fashion 
as in the Matlab Control Systems Toolbox. 

The evolution of an initial uncertain input distribution 
(solid thick line), presented in Figure 6, localized at outer 
loop set point level is mapped in a successive manner 
through the network components. The result showing the 
successive convergence to the known closed loop solution 
(also solid thick line), known in this simulation example, is 
displayed in Figure 6 (dotted lines). Note that to produce 
this plot the density lists were 're-binned' as presented in 
Section III, based on the same support and bin size as for 
the original distribution. 

V. CONCLUSIONS 

The propagation of uncertain inputs through series, par- 
allel and feedback interconnections of dynamical systems 
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Fig. 6.   Density mapping iterations convergence 

with simple asymptotic behavior has been studied by em- 
ploying the discrete density mapping method. Conver- 
gence guarantees further explored in [20] reflect the prac- 
tical observations made when developing the code. 

The proposed method achieves at least an order of mag- 
nitude computational gains versus Monte Carlo methods. 
Understanding the role of density lists in dealing with cor- 
related signal density functions provides a framework for 
an extension of current work to integrate PC methods. 
The basic idea of this future approach is to decompose the 
distribution of an uncertain input into small pieces of uni- 
form distributions and propagate these distributions based 
on the PC methods. In this way the correlation informa- 
tion is preserved for later operation on dependent densi- 
ties. Given the uniform distribution characteristic of every 
cell the PC expansion will be performed on an orthonor- 
mal Legendre basis. This extension opens the road for the 
propagation of uncertain inputs through interconnections 
of uncertain dynamical systems with uncertain initial con- 
ditions. 

Extensions of the current method to multivariablc non- 
linear dynamical systems are possible. Considering a sin- 
gle multivariablc nonlinear block note that the uncertainty 
propagation method presented generalizes to volumes in- 
stead of areas since the underlaying principle is the con- 
servation of probability. Also dealing with products is 
achieved by using a logarithmic conversion followed by the 
application of knowledge acquired in the case of summing 
correlated signal density functions. 

[9] 
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[11 

[12: 

[13: 

[14: 
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Graph Decomposition Methods for Uncertainty 
Propagation in Complex, NonHnear Interconnected 

Dynamical Systems 
Subbarao Varigonda, Tanias Kalmar-Nagy, Bob LaBarre, Igor Mezic 

Abstract—Uncertainty propagation in complex, interconnected 
dynamical systems systems can be performed more efficiently 
by decomposing the networli based on tlie hierarcliy and/or 
the strength of coupling. In this paper, we first present a 
structural decomposition method that identifies the hierarchy of 
subsystems. We briefly review the notion of horizontal-vertical 
decomposition (HVD) or strongly connected components (SCC) 
decomposition of a dynamical system and describe algorithms 
based on Markov chain theory and graph theory to obtain 
the HVD from the equation graph of the system. We also 
present a non-structural decomposition method to identify the 
weakly connected subsystems of a system based on the Laplacian 
of a graph derived from the Jacobian. While most of prior 
efforts in this direction concentrated on stability, robustness and 
concrete results were limited to linear systems, we use it for 
uncertainty propagation and study of asymptotic behavior of 
nonlinear interconnected systems. We illustrate the two methods 
using a fuel cell system example. These two methods provide a 
framework for efficient propagation of uncertainty in complex 
nonlinear systems. 

I. INTRODUCTION 

Complex physical systems often possess an inherent struc- 
ture from which they derive the robustness of their behavior. 
For example, the DNA molecule has a strong backbone 
structure that allows global modes [1] and gene regulatory 
networks have a hierarchical structure that allows complex 
gene expressions [2]. Similarly, complex engineering systems 
such as coordinated group of vehicles, sensor and communi- 
cation networks are designed by interconnecting subsystems 
in a systematic manner 

There is significant interest in robust design methods for 
complex, interconnected dynamical systems. The design of 
such systems can be significantly accelerated by using models 
for robustness assessment and redesign. This requires un- 
derstanding how uncertainty in various parameters and the 
system model itself affects the model outputs. Computational 
methods such as Monte-Carlo, polynomial chaos and various 
modifications of these can be used to propagate probabilistic 
information from the inputs/parameters to the outputs of a 
static or dynamical system. Unfortunately, the computational 
effort for these methods scales poorly with system complex- 
ity and there is a strong need for efficient alternatives. A 
promising direction is the decomposition of a complex system 
using graph theoretic methods followed by block-by-block 
propagation with iterations when necessary. 

Graph theoretic methods are used widely in control theory 
[3] computer science and network systems. More recently. 

graph theoretic techniques have been employed in conjunction 
with set oriented numerical methods for computing the almost 
invariant sets of dynamical systems [4]. There is a close 
connection between Markov chain theory and graph theory [5]. 
We refer the reader to standard text books and/or review papers 
such as [6], [7] for basic notions fi-om algebraic graph theory 
and graph algorithms such as spanning and induced subgraphs, 
cycles, connectedness of undirected graphs, strongly connect- 
edness and topological sorting of directed graphs, adjacency, 
incidence and Laplacian matrices, the significance of the 
eigenvalues of these matrices, reducibility and irreducibility 
of the adjacency matrix, depth first search and breadth first 
search. 

The aim of this paper is to introduce graph theoretic 
methods for decomposing a complex dynamical system into 
hierarchically and/or weakly connected subsystems for the 
purpose of uncertainty propagation in systems. The structure 
resulting fi-om graph decomposition with series, parallel or 
feedback connections among subsystems can be exploited for 
efficient methods for computation of uncertainty propagation 
[8]. We briefly review a structural decomposition algorithm 
[3], [9] that employs the so-called equation graph of a dynam- 
ical system in and identifies the subsystems and the associated 
hierarchy in Section II. The notion of horizontal-vertical 
decomposition (HVD) of a dynamical system is introduced 
and two algorithms for generating the HVD are presented. 

The structural decomposition method presented in Section II 
considers only the directionality of influence among variables 
(i.e., whether a variable Influences another variable) but not 
the strength of interaction. A limitation of this method, as 
described in Section II-A, is that it does not yield any useful 
structure for a system or subsystem whose equation graph is 
strongly connected. However, this limitation can be overcome 
using another graph theoretic method described in Section III. 
The latter method accounts for the strength of coupling be- 
tween variables and identifies any weakly connected subsys- 
tems using a graph partitioning technique. The two methods 
can be applied in conjunction to achieve a fine decomposition 
of a complex system. We demonstrate the methodology using 
a reduced order fuel cell system model in Section IV. 

II. STRUCTURAL DECOMPOSITION METHODS FOR 

DYNAMICAL SYSTEMS 

Let {X,iJ,,T\P) be a dynamical system and Af = 

1,..., iV C Z where X = (S)igj\r -^i' ^^^^ -^i ^ compact subset 



of M. Let Yli : X -^ Xi he the usual projection to the i — th 
component. 

In addition, n = ®i^j^l^i where ^i is a probabilistic 
measure on Xi and T*(a;,p) : X x P ^ X is either a 
discrete-time family induced by a map (in which case i £ Z) 
or a flow of a system of first-order autonomous system of 
ordinary differential equations. The parameters p are defined 
on P = (S)i£M ^i' where each Pi a compact subset of M. 
The change in Xi is given by a function }i{x), where a; G X. 
This, of course is the i — th component of either the vector 
field f{x) = d/dt\t=o{T*^{x,p)) or T^{x,p) - x, in the case 
t eZ. The Jacobian matrix is defined as 

J{x,p) = Df{x,p), 

or, in components, 

dfi Jji{x,p) = -^{x,p), 

where j represents the column and i the row of the matrix. 
We define the following matrix M{x,p) fi'om J{x,p): 

Mji{x,p) if \Jji{x,p)\ T^O, 

Mji{x,p)    =    0  otherwise. (1) 

where k is the number of non-zero entries in row i (i.e. the 
number of components for which component i influences the 
change of state). Note that an arbitrary state-dependent matrix 
A{x) could be transformed to a stochastic matrix this way. 
From the matrix M we can decompose the system to its 
horizontal-vertical decomposition (HVD) [9]. The decompo- 
sition is obtained by spectral analysis of M. This is the same 
as the one used in [3] except that the decomposition itself is 
related to Markov chain theory and different vertical levels 
are identified as left eigenvectors of M. For completeness 
and to set the decomposition in reader's mind we show here 
a figure fi^om [9] in which the decomposition is graphically 
depicted. The graph theoretic decomposition - equivalent to 
the one described by [3] is provided in the next section. 
These decompositions split the system into vertical levels, with 
components on each level affecting change only in the ones 
above them. This is very significant for uncertainty propaga- 
tion. Assume there is parametric uncertainty in parameter p 
that only affects a state at the lowest level. Since dynamics at 
the lowest level is not affected by the dynamics at the levels 
above, the asymptotic probability density at the lowest level 
can be used as the input for the states above. In this way, 
the computational effort for probability density propagation is 
substantially reduced. 

A. Decomposition based on graph theory 

We now present an alternative method to obtain the HVD of 
a dynamical system using graph theory. The key observation 
is that the recurrent states obtained recursively using the 
Markov chain theory for the HVD correspond to the strongly 
connected components (SCC) of the equation graph. Note that 

Fig. 1.    Decomposition described in the theorem 

any digraph can be uniquely decomposed into its SCC [5], 
[10]. 

Each SCC of the equation graph can be identified as a 
subsystem (a supemode) and the condensed graph represent- 
ing the interactions between the supemodes is an acyclic 
digraph (ADG) [5]. The HVD can be obtained in a straight 
forward manner fi-om this condensed graph. The subsystems 
corresponding to vertices with out-degree zero belong to level 
1 of the HVD. These vertices can be deleted and the process 
repeated to successively identify the subsystems in the next 
level. 

The SCC of a digraph can be identified efficiently using the 
depth first search (DFS) algorithm [5], [10]. In particular, the 
following graph algorithm generates the SCC: i) form a DFS 
forest of the given digraph and post-order the vertices, ii) form 
a DFS forest of the reverse graph of the original graph (i.e., 
with all the edges reversed in direction) using the ordering 
obtained in step i). The SCC are given by the DFS forest in 
step ii). The DFS of a graph can be carried out using efficient 
algorithms and the computational effort is of the order n + e 
where n is the number of vertices and e, the number of edges 
[5]. 

III. DECOMPOSITION BASED ON THE JACOBIAN VALUE 

In this section we investigate the use of the Jacobian matrix 
to decompose a system of equations into a collection of weakly 
coupled systems, each of which consists of strongly coupled 
equations. We note that the Jacobian matrix is generally state- 
dependent, hence varies with time as the states evolve. This 
variation may reflect the fact that in different regions of state 
space the strength of the couplings between variables change. 

Our method is along the lines of [4] where transitions 
between regions in state space for a dynamical system are 
described by a Markov chain whose underlying graph was 
employed to identify the number of almost invariant sets. A 
symmetrized adjacency matrix is formed from the stochastic 



matrix of the Markov chain and from this the graph Laplacian 
is constructed. The eigenvalues of the graph Laplacian are used 
to determine the number and location of the almost invariant 
sets in state space. 

Here we propose the use of a normalized numerical Jacobian 
matrix to replace the Markov chain probability transition 
matrix. Then we proceed analogously to build an equation 
graph. Eigenvalues of the associated graph Laplacian are used 
to identify the number of weakly coupled subsystems. 

Given an n dimensional system,i: = f{x), we form the 
matrix W (transpose of the Jacobian) with entries evaluated 
at a given point in state space 

dfi {x) 
dxi 

The entries of the i* row are normalized by their row sums 

3 = 1 

Normalizing the entries by their row sums, we get 

dxi 

Let the normalized matrix be P. Clearly, P is a stochastic 
matrix, and as such can be thought of as the probability 
transition matrix for a Markov chain. In our method, the Xi 
act as labels for the graph vertices. The P matrix measures 
the 'effect' that Xi has on each Xj. Next we form the diagonal 
matrix M = diag{fj.i}, where Hi is the i* component of 
the stationary probability vector for P. Finally, we form the 
symmetric matrix 

^ = 1 (^MP + {MPf) 

and use it as a weighted adjacency matrix for our equation 
graph, with vertices labeled by the states Xi. This sym- 
metrization corresponds to converting a directed graph into an 
undirected graph, or equivalently, to reversibilizing a Markov 
chain. 

In order to determine the number of subsystems the system 
should be decomposed into, we form a generalized Laplacian 
matrix (see [6]) associated with the graph determined by 
the weighted adjacency matrix, A. To form the generalized 
Laplacian, we first compute the degree of each vertex in the 
graph determined by A as 

deg(f i) = ^ Aij 

where each vertex Vi  corresponds to one of the state 
variables Xi. Finally we form the generalized Laplacian matrix 

L = D-i {D-A)D-i. 

where D = diag {deg (uj)} is the degree matrix. 

12 rich gas 

to FC stack 

HDS      MIX CPOX 

Fig. 2.    Schematic of the fuel processing system of a fuel cell power plant 
showing various reaction stages 

Note that L is symmetric, positive semidefinite, and so has 
no negative eigenvalues. The multiplicity of the zero eigen- 
value gives (see [6]) the number of connected components 
of the graph determined from A. Numerically, while we will 
always find one zero eigenvalue, there may be others that are 
close to zero. In [4], the multiplicity of the zero (and near-zero) 
eigenvalues is used as an indicator of the number of almost 
invariant sets in the phase space. In our case, the connected 
components of the graph map to subsystems of equations. 
Consequently we use the multiplicity of the zero (and near- 
zero) eigenvalues to determine the number of weakly coupled 
subsystems into which our original system decomposes. An 
example is shown in the next section. 

As mentioned previously, with the evolution of the dy- 
namical system, the state variables change and so does the 
evaluated Jacobian matrix. This means that the decomposition 
may be different in different regions of state space. The 
current approach is to mimic the modified Newton approach to 
nonlinear equation solvers, where a new Jacobian is evaluated 
when certain convergence criteria are not met. 

IV. APPLICATION TO A FUEL CELL SYSTEM MODEL 

In this section, we demonstrate the two decomposition 
algorithms discussed in Sections II and III using a fuel cell 
system model. The fuel cell system consists of a fuel processor 
that combines natural gas fuel with air and reforms it into 
hydrogen rich gas using a series of reactors. A schematic of 
the fiiel processor (without the fuel cell itself) is shown in 
Figure 2. 

The hydrogen rich gas feeds into the anode channel of a 
PEM (polymer electrolyte membrane) fuel cell which com- 
bines hydrogen from the anode with air from the cathode to 
produce electricity, heat and water. The model we consider 
has highly simplified physics and was developed for control 
studies [11], [12]. The model has 10 states and two control 
inputs. Figure 3 shows the lumped volumes in the model and 
the respective state variables in the volumes. 

The pressures and partial pressures in the volumes are 
denoted by p. The superscripts hex,hds,wrox,an refer to the 
volume (component) name and the subscripts H2, CH4 and 
air refer to the species. The temperature of the CPOX 
reactor is denoted by T^pox and the speed of the blower 
by (jjbio- The  states of the  system  are ordered as a;   = 
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Fig. 3.    Lumped volume model of the fuel cell power plant 
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Fig. 4.    Equation graph of the fuel cell system model 
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The equation graph of the system showing the who-affects- 
who relation is shown in Figure 4. The Jacobian of the system 
at an operating point of interest is given in Eq 2 

Applying the Markov chain decomposition method of Sec- 
tion ??, we obtain the HVD as shown in Figure 5. At levels 
1, 2 and 4, we have subsystems with a single state whereas at 
level 3, we have a subsystem with 7 states. 

Using the graph theoretic algorithm described in Section II- 
A, a DFS tree for the equation graph can be constructed with 
post-ordering of the vertices as shown in Figure 6(a). The 
DFS forest for the reverse graph using the ordering from 
the previous step is shown in Figure 6(b). This yields the 

\       ',    P'"'°''H2    i 

i '^zz:^ '^:z^  
Cp""'   ) c^'.:) 

CP""J (p-^")                -^^P" CHA   ) 

strongly Connoctod Compor ant 

(wOlo-) 

Fig. 5.    Horizontal-vertical decomposition of the fuel cell system model 

p"..) (    P""H2    ] 

(    P""'     ) 

{    P'""'CH4   ) 

M. -, 
( TCP"   ) 

(b) 

Fig. 6. (a) DFS tree of the equation graph for the fuel cell system with post- 
ordering of the vertices, (b) The DFS forest of the reversed graph showing 
the strongly connected components of the original graph 

Strongly connected components of the original equation graph. 
Notice that the strongly connected components are precisely 
the same as the subsystems at various levels in Figure 5 from 
the Markov chain method. 

The subsystem at level 3 in Figure 5 contains 7 states 
and is a strongly connected component. The Jacobian value 
method described in Section III can be applied to further 
decompose this subsystem into weakly connected subsystems. 
We construct the stochastic matrix and the Laplacian of the 
associated graph. The eigenvalues of the Laplacian are 

[ 0   0.0296   0.1958    0.6518    0.8769   0.9912    1.1089 ] 

and shown in Figure 7. It can be observed that the second 
eigenvalue is relatively closer to zero than the rest of the 
eigenvalues. This indicates that the 7 state system can be 
decomposed into two weakly coupled subsystems. The two 
subsystems can be identified as {Tcpox)P"",P^^°^} and 
jphex p/ids pmia: ^p^j.^^} bascd on the sign of the components 
of the second eigenvector. Physically, this decomposition re- 
lates to the downstream and upstream dynamics of the CPOX 
reactor. 

V. CONCLUSION/SUMMARY 

Promise of graph decomposition methods for enabling 
efficient uncertainty propagation in complex, networks of 
dynamical systems. 
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Eigenvalues of the generalized Leplaclan for the fuel cell system 
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ersen, and S. Ghosh, "Control of natural gas catalytic partial oxidation 
for hydrogen generation in fuel cell applications," IEEE Trans. Contr. 
Syst. Tech, (to appear). 

Fig. 7.   Eigenvalues of the Laplacian for the level 3 subsystem in Figure 5 
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Spectral balance: a frequency domain framework for analysis of nonlinear dynamical systems 

Andrzej Banaszuk    Prashant G. Mehta 

Abstract—A frequency-domain framework for analysis, 
computations, and uncertainty propagation in nonlinear sys- 
tems driven by broad-band disturbances is introduced and 
illustrated in a simple example of a nonlinear system that 
exhibits noise-induced transitions between two stable equilib- 
ria. The spectral balance framework generalizes the standard 
harmonic and Gaussian signal balance in feedback systems. 
The application example presented is a scalar model with 
cubic nonlinearity after pitchfork bifurcation driven by a 
broad-band disturbance. An approximate and iterative spec- 
tral balance (including determination of equilibria) is solved. 
The solution of the approximate spectral balance is used to 
reformulate the original model using a loop transformation 
so that an iterative procedure for finding the spectrum of the 
output converges to the true spectrum of the solution. 

I. INTRODUCTION 

Many industrial flows involve complex interactions of 
acoustic waves, vorticity, fuel transport, and chemical re- 
actions. The control objective often is to create beneficial 
non-equilibrium dynamics with control. Examples include 
control of flow separation and mixing enhancement. In 
this paper we introduce a frequency domain framework 
for analysis and non-equilibrium control design for a large 
class of models of physical phenomena involving mul- 
tiple oscillatory modes coupled through nonlinear terms, 
transport delay, and driven by broad-band disturbances. 
While motivated by specific problems arising in military 
aeroengines, the methods will be applicable to large class of 
distributed dynamical systems involving oscillatory dynam- 
ics with nonlinear cross-coupling, saturated nonlinearities, 
transport delay, and broad-band disturbances. 

The spectral balance framework that we propose gener- 
alizes the standard harmonic balance and Gaussian signal 
balance in feedback systems [4], [2]. The framework is 
introduced and illustrated in an example of a nonlinear 
system that exhibits noise-induced transitions between two 
stable equilibria. The example presented is a scalar model 
with cubic nonlinearity after pitchfork bifurcation driven 
by a broad-band disturbance. An approximate and iterative 
spectral balance of the constant and broad-band signals (in- 
cluding determination of equilibria) is solved. The solution 
of this approximate spectral balance is used to reformulate 
the original model using a loop transformation so that an 
iterative procedure for finding the spectrum of the output 
converges to the true spectrum. 

United Technologies Research Center, 411 Silver Lane, East Hartford, 
CT, 06108. Email: BanaszA@utrc.utc.com 

Email: MehtaPG@utrc.utc.com 

II. SPECTRAL BALANCE 

Consider a model of a lightly damped stable linear system 
with transfer function Go{jw), in a feedback loop with a 
static nonlinearity /(•), subject to a driving disturbance n(t) 
with the Fourier transform N[juj). An uncertainty in the 
model is represented by an (in general nonlinear) operator 
A() in a feedback loop around the nominal model The 

Nominal Model 

NQco) 

/(■) 

G^ijO)) 

Uncertainty 

H.mx{jo>)) 

iXCJco) 

Fig. 1.    The model structure 

model equations are 

Xijuj) = Go{juj){N{jw) - A{joj,X{JLo)) - Yijuj)) (1) 

y{t) = fix{t)) (2) 

where, X{-) = Tx{-), F(-) = Tyi-), and N{-) = Tn{-), 
are the Fourier transforms of the corresponding temporal 
signals. We assume that nonlinear mapping /(■) is Lipshitz 
on each bounded set. The equation (2) can be represented 
in the frequency domain as 

Y{JLJ) = f(X{jio)) := :Ff{:F-^X{juj)). (3) 

Now, the feedback system (l)-(2) can be represented as 

X{3^) = Go{joj){N{JLj) - fiXiJuj) - A{juj)X{ju;)). 
(4) 

Note that for the linear case f{x) = 0, A(ja;, X{jto)) = 
A{JLo)X{juj) the mapping of the uncertainty A(jw) to the 
output of the system is given by the formula 

Xijiu) = {I + Go{jw)AiJcj))-'GoiJij)N{JLo).      (5) 

involving the sensitivity function (J -I- Go{jij)A{jijj))~^. 
Note that the  frequency  domain representation  greatly 



simplifies tlie uncertainty propagation analysis. 

1. Uncertainty propagation. The sensitivity function 
(I + Go{ju})A{JLj))^^ allows to explicitly map the 
probability distribution of the uncertain parameters 
contributing to A(ja;) to the probability distribution of the 
output Y{JU!). 

2. The frequency domain representation greatly accelerates 
computation of this mapping. Note that only the algebraic 
calculations need to be performed in evaluating the formula 
(5). In contrast, a time domain counterpart of the (5) would 
require evaluation of the convolution integrals over long 
period of time. Moreover, in the time domain formulation 
one needs to wait for transients to subside, which is 
the issue when dealing with lightly damped dynamics. 
There are additional benefits of the frequency domain 
representation in the case when GoiJoj) contains time 
delays. 

3. Tools from the robust linear control theory allow 
to handle dynamic uncertainty in case when only the 
bounds on the uncertain operator are known [1]. 

Appart from application to the uncertainty propagation, 
the frequency domain formulation allows to study funda- 
mental limitations of achievable control performance using 
methods of the complex analysis. 

The spectral balance approach is a frequency domain 
framework for the uncertainty analysis of nonlinear systems 
that includes the case of non-equlibrium bounded dynamics 
that retains the advantages of the linear sensitivity function 
framework: explicit formulas mapping uncertainty to the 
output and the speed of computation. We will begin with 
the particular case of system in Figure 1 using the fixed 
point formulation (4). To introduce the spectral balance 
framework we will consider the case without uncertainty 
shown in Figure 2 with the corresponding fixed point 

xm 
Fig. 2.    The model structure 

formulation of the spectral balance equation given by (6) 

Xijuj) = Go{juj){NiJuj) - f(X{juj)). (6) 

Note that the spectral balance framework generalizes the 
standard harmonic balance (where the input signal n(-) 

is periodic, or when the dynamics has limit cycles) and 
Gaussian signal balance (where the input signal n(-) is a 
Gaussian broad band signal) in feedback systems [4], [2]. 

We assume that the dynamics of (2) is globally bounded 
and that there is an attractor. Eventually we intend to 
introduce a spectral balance framework for the class of 
bounded power signals on an infinite time interval. In this 
paper we restrict the attention to the space of L2 signals on 
the interval [0, T], where T is large relative to the slowest 
time scale in the system. The induced operator norms are 
the Hao norms. 

A sufficient condition for existence of a unique solution 
of the spectral balance equation (6) is 

\\Go{i^)U{X^{JL^))-f{X,{j^)))\\ < \\X^{juj)-X^{juj)\\. 
(7) 

For all Xi{juj) in I/2[0, T]. Note that in this case a unique 
solution to (6) exists (by applying the Banach Contraction 
Mapping Theorem [3]). Moreover, the approximate solu- 
tion of the spectral balance equation can be obtained by 
successive approximations using the formula 

Xi+i{juj) = Go{juj){NiJu;) - fiXiiJuj)).        (8) 

with an arbitrary initial condition. 

Note that if the condition (7) is satisfied for all Xi{jui) in 
a closed set B in 1-2 [0, T] that is invariant for the mapping 
Go{ju;){N{juj) - /(•))> one can approach a solution of the 
spectral balance equation (6) in B using (8) with Xo{juj) e 
B. 

III. LOOP TRANSFORMATION 

A sufficient condition for (7) is the small gain condition 
for the feedback loop in (2). However, even if the condition 
(7) is not satisfied, which would be the case if the loop gain 
is large, one can attempt to enforce the condition (7) for an 
equivalent feedback system to (2) by a loop transformation. 
An example of a linear loop transformation is shown in 
Figure 3. Here H{juj) is an arbitrary stable linear operator. 

Giijuj) := [I + H{ju})Go{juj))-'Go{juj).        (9) 

and 

MXiJuj)) := f{X{juj)) - H{MX{jw).      (10) 

The spectral balance condition for the system in Figure 3 
is 

Xijoj) = Gi{juj)iN{juj) - fi{X{juj)).        (11) 

Note that a sufficient condition for the contraction condition 
for the transformed spectral balance (11) is 

||Gi(ia;)(/i(X2(ia;))-/i(XiO-c^)))|| < \\X2iJu;)-XiiJL,)\\. 
(12) 

If the nonlinear part of the loop in Figure 2 has a stabilizing 
effect, the role of the operator H{jw) is to reduce the Hao 
gain of the nonlinear part of the loop and increase the 



AO^ Hijco) 

-OF /(•) 

NO'co) 

G, (jO)) 

G,{jco) 

Hijo)) 

X(JQ}) 

Fig. 3.    The loop transformation to enforce loop contractivity 

contractivity of the linear part of the loop. More precisely, 
the gain of the nonlinear operator f{X{ju))) is reduced by 
subtraction of a linear approximation of f{X{juj)) and the 
approximate linear operator is incorporated in the linear part 
of the modified loop. Thus, a good choice of H{joj) is the 
one that minimizes H/iC-'fO'w))!! for X{juj) representing 
the solution of the spectral balance equation (11). 

Of course, the minimization of ||/i(X(ja;))|| requires 
knowledge of X(juj) itself, which is exactly the solution of 
the spectral balance equation that we seek. Note that we are 
interested in the case of system (2) having non-equilibrium 
attractors or subject to a large driving disturbance, so that 
an approximation of nonlinear operator f{X[JLj)) by its 
linearization at [X{juj) = 0 is not suitable. 

The key idea introduced in this paper is to proceed in 
the following three steps: 

1. Find an approximate solution Xapprij^) close to 
X{juj). For this, the describing function techniques, both 
for harmonic and random Gaussian signals, can be utilized. 
In fact, as we will show in the next section, it may be not 
necessary to find an approximate solution Xappr(iw), but 
only few parameters describing such a solution, like its 
time average and the average power. 

2. Utilize the knowledge of Xappriji^) (or the parameters 
describing it) to find a linear transformation H[juj) that 
minimizes (or at least reduces) H/iC^apprO't*^))!! = 
||/(X„pp,(ja;)) - H[juj)Xappr{j^)\\. 

3. Use H{ju>) to define the loop transformation (9)- 
(10). If the contraction condition (12) is satisfied on a 
closed set B in L2[0,T'] that is invariant for the mapping 
Gi{juj){N{jcj) - /i(-)). one can approach a solution of 
the spectral balance equation (6) in B using the iterative 

(13) 

process defined by 

Xi+iU^) = GiiJco){N{joj) - fiiXiiJuj)) 

starting with an arbitrary Xo{juj) 6 B. 

At present it is not clear under what general conditions 
the procedure described above will result in finding solu- 
tions to the spectral balance equations. In the next section 
we will show one example of a system with nontrivial 
dynamics, for which that the procedure yields the desired 
result. 

IV. EXAMPLE 

Consider the equation 

x{t) + ax{t) + bx^{t) = n{t). (14) 

Here we assume that a < 0, 6 > 0, and the input signal 
n(-) has zero mean and flat spectrum \N{juj)\ = Oi for 
all u). In the sequel we will refer to the input signal n(-) 
as noise, even though we emphasize that in this paper we 
only consider the deterministic case. Note that for a = 0 
the system (14) undergoes a pitchfork bifurcation and the 
equilibrium a; = 0 becomes unstable for all a > 0. Two 
locally stable equilibria occur at a; = ^—| and x = 
-,/^. Note that for a small value of af the solution 

V      0 * 

x{t) will be close to one of the stable equilibria. For some 
higher value of af the solution x{t) will be transitioning 
from a neighborhood of the one of the stable equilibria 
to the other, as shown in Figure 4. Note that the spectral 

Typical solution 

Time trace, a=-1, b=1, noise power=0.99472 

Fig. 4.   Typical solution of system (14): noise-induced transitions between 
two stable equilibria 

balance equation for (14) is 

1 
Xiju^) = 

ju) + a 
{N{juj) - f{X{juj)),        (15) 



where f{x) bx^. Note that, since o < 0, the linear 
is unstable, and the contraction condition operator j^ 

(7) is not satisfied. However, the nonlinear operator f{x) 
has a stabilizing effect, so that we can attempt to transform 
the loop to an equivalent one, for which the contraction 
condition is satisfied, as described in Section III. 

Let X := y Jp x{t)dt denote the time average of x{t) 
and let x'{t) := x{t) - x denote the deviation of x{t) 
from its average value. Let a^. := ^ /g x'{tfdt denote 
the mean power of x'{t). In what follows we will compute 
approximate value of x and a^ by solving approximate 
spectral balance equations. By taking the time average of 
(16) and using the fact that the average of {x + x'{t)Y is 
x^ + Zhal we obtain 

Now, solving (16) and (23) we obtain 

(24) 

(25) 

(26) 

(27) 

S = 0. 

(28) 

(29) 

Figure 5 graphically represents the solution to the approx- 
imate spectral balance equations as function of the input 
power (Ti for a = — 1, 6 = 1. The solutions for x and 

x{a + ?,hal^-h3?) = n = 0. (16) 

Subtracting (16) from (14) and re-arranging terms yields 

x'{t) + (a + h)x'{t) + h{x'{t)) = n{t),        (17) 

where 

h:=hal + 'ibx'^ (18) 

h{x'{t)):=b{x'^-al){x' + ?,x). (19) 

To find approximate values of x and a^ we will neglect the 
term h{x,ax,x'{t)) in (17) and solve the equation 

x'{t) + {a + bal + 3bx^)x'{t) = n(i). (20) 

Note that for fixed values of x and al (20) is a linear 
equation that can be solved in the frequency domain as 

X'iju^) = - 
Niju:) 

ju} + a + bal + 3&a:^ ' 
(21) 

For a moment we assume that the values of x and al are 
such that a + bal+ 3bx^ > 0, so that the transfer function 
■^-,—,}., ,,,^2 US stable. This assumption will be verified 

after x and a^ are calculated. 

Now we obtain the closure equation for a^ by integrating 
the absolute values of both sides of (21) over all frequencies 

al = 
1  r Ci 

^ juj + a + bal + 36a;2 
^(LJ. (22) 

The equations (16) and (22) form an approximate spectral 
balance for the system (14. The integral in (22) can be 
analytically evaluated so that we can write the following 
equation 

^2 

(23) 
2(a -I- bal + 3^^)' 

Approximate spectral balance 

^   0! 

it 
'...-.' o ' ' ' 

_.    ^, 1,.^   -.   ■:■   o   '■■■   '■"-■   'T' 

o ' ! ' 

0.2 0.4    A 0.6 0.8 

2 <^ 

4b 

Fig. 5. Solutions to approximate spectral balance equations as function 
of the input power 

al have a natural intepretation. For Ci < fj there are 
two values of the time average x close to the no-noise 
equilibria that can be attained. The value of a^ (that could 
be interpreted as standard deviation of x{t)) is small, so 
that the solution x{t) stays close to an equilibrium solution 
and does not transition to the neighborhood of the other 
equilibrium. Above the critical value of the input power 
(7i = |j the solutions x{t) deviate from the stable equilibria 
far enough to transition between the neighborhoods of the 
both equilibria. Since the transitions back and forth can 
occur, X = 0 becomes the mean and the standard deviation 
Ua; is close to the distance from the new mean a: = 0 to 
the value where the solution x{t) spends most of the time: 
close to the no-noise equilibria of (14). 

We will now use the values of x and a^ given by (5) to 
perform a loop transformation as described in Section III. 



More precisely, we will solve the perturbation equation (17) 
in the frequency domain using the fixed point formulation 

1 
X'ijoj) -{N(juj)-MX'{juj)).       (30) 

jui + a + h 

It can be easily verified that a+h > 0 for i and a^ given by 
(29). Analytic verification of the contraction condition for 
the operator . _A , ;^ {N{joj) — /i(-) is difficult. Therefore 
we will assume that the contraction condition is satisfied 
and proceed with an iterative solution to (30) using 

1 
X'i+i{ju>) = -{N{juj)-h{X'i{3uj))    (31) 

juj -\- a + h 

with X'Q{JU)) = 0 and verify the contraction condition 
numerically. To illustrate and verify this procedure, a nu- 

2 
merical solution of (14) for a = —1, b = 1, and CTJ > |j 
was obtained. The spectrum N{juj) of the noise from 
the time domain simulation was saved and used in the 
formula (31). Figure 6 shows an excellent agreement of 
the spectrum X'{ju>) from the time domain simulation 
and the spectrum X'w{ju>) from the iterative procedure 
(31) after 10 iterations. Figure 7 shows comparison of the 

Simulation and approximation 
after 10 iterations: spectra (jft) 

Spectra, a=-1, b=1, noise power=3.9789 

0.2 0.3 
Frequency, Hz 

Fig. 6.    Solution to iterative spectral balance equations: spectra 

time traces of the solutions of (14) obtained by the time 
domain simulation and by the iterative spectral balance and 
the inverse Fourier transform. Figure 8 shows decay of 
the power of the approximation error X'{jijj) — X'i{juj) 
normalized by the power of X'{jw) as a function of 
iteration step i. Finally, Figure 9 shows the contraction rate 
"ifvV^'H'^^7 y-'*'?-'''fii" as a function of iteration step i. This 
verifies the contraction at the rate of about 0.8 was mdeed 
achieved by the loop transofrmation involving solution of 
the approximate spectral balance. 

Simulation and approximation 
after 10 iterations: time traces 

Time traces, a=-1, b=1, noise power=3.9789 

Time simulation 
Iterative Spectral Balance 
Equilibria 

40 60 80 
Time, sec 

Fig. 7.    Solution to iterative spectral balance equations: time traces 

2'° FFT points 

Relatve error of approximation. a=-1. b=1, noise power=3.9789 
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Fig. 8.    Solution to iterative spectral balance equations: relative approxi- 
mation error for 2^" FFT points 

In the case that were examined obtaining an approximate 
solution of (14) using the formula (31) was orders of 
magnitude faster that the time domain simulations using 
Simulink. 

V. CONCLUSION 

A frequency-domain framework for analysis, computa- 
tions, and uncertainty propagation in nonlinear systems 
driven by broad-band disturbances was introduced and 
illustrated in a simple example of a nonlinear system 
that exhibits noise-induced transitions between two stable 
equilibria. The spectral balance framework generalizes the 
standard harmonic and Gaussian signal balance in feedback 



Contraction rate, a=- 1,b=1, noise power=3.9789 
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Fig. 9.    Solution to iterative spectral balance equations: contraction rate 

systems. The application example presented is a scalar 
model with cubic nonlinearity after pitchfork bifurcation 
driven by a broad-band disturbance. An approximate and 
iterative spectral balance (including determination of equi- 
libria) is solved. The solution of the approximate spectral 
balance is used to reformulate the original model using 
a loop transformation so that an iterative procedure for 
finding the spectrum of the output converges to the true 
spectrum of the solution. The future work will involve more 
carefuU study of the function spaces suitable for the spectral 
balance formulation and obtaining some analytic sufficient 
conditions for the contraction. 
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An Iterative Method for Propagation of Probability 
Distributions in Feedback Systems 

Subbarao Varigonda 
United Technologies Research Center, East Hartford, CT 06108, USA. 

Abstract—Efficient propagation of probability distributions in 
feedback systems is central to a decomposition based approach 
for uncertainty propagation in complex, interconnected systems. 
In this note, we propose an iterative method for static feedback 
systems to obtain the probability density of the output from that 
of the input. We prove the convergence of the proposed method 
under the assumption that the loop operator is contractive. The 
method is illustrated with an example. It is shown, based on 
the results from the theory iterated random functions, that 
the method extends to the case when additional parametric 
uncertainty is present within the loop. 

I. INTRODUCTION 

Robust design of complex, interconnected systems requires 
efficient computational methods for uncertainty propagation. 
Knowledge of the probability distribution function (pdf) of 
key output variables derived from the knowledge of input vari- 
ables enables better decision making during design. Existing 
methods for propagation of uncertainty such as Monte-Carlo, 
polynomial chaos and stochastic surface response methods 
have scale poorly with problem size and are computationally 
very demanding for complex systems [1]. 

In order to overcome the barrier of computational effort, 
a new approach based on decomposition of complex systems 
has been emerging as a promising direction. In this approach, 
a complex system is first decomposed using graph theoretic 
methods into subsystems connected in series, parallel or feed- 
back [2]. Then, a block-by-block propagation is performed 
accounting for the dependencies among variables [3]. Such 
a method exploits the underlying hierarchical structure of a 
complex system and provides the flexibility to use different 
methods for different subsystems of the original system. 

Feedback loops at the system level, or encompassing a 
large number of subsystems pose a significant risk to the 
block-by-block framework since the structural decomposition 
method described in [2] identify the feedback loops as a single 
subsystem. The decomposition method based on the Jacobian 
value and the associated graph Laplacian, also described in 
[2], can identify weak feedback connections only. However, 
moderate to strong feedback {e.g., due to a controller) is 
common in many engineering systems. The ability to prop- 
agate uncertainty through such feedback loops block-by-block 
without having to solve the closed loop system in entirety is 
very attractive. Thus, there is a need for alternative approaches 
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Fig. 1.    Feedback loop with loop operator G 

to speeding up the computation for uncertainty propagation in 
feedback systems. 

In this note, we seek an iterative method to compute the 
pdf of the output of a feedback loop from the pdf of the 
input. The feedback system under consideration is shown in 
Figure 1. The loop has input u, the internal signal x and output 
y = Gx where G is the loop operator (possibly nonlinear). 
In Section II, we present the problem setup and formulate 
the iteration equations by abstracting a computational scheme 
conceived and implemented by Kalmar-Nagy and Huzmezan 
[3]. We prove the point-wise convergence of the iteration to 
the true closed loop pdf under the assumption that the loop 
operator is confractive. 

In Section V, we consider the case when there is additional 
parametric uncertainty in the loop operator. We show that the 
problem can be cast as a system of iterated random fiinctions. 
Based on the results in [4], [5], we claim that the iteration 
converges to the solution of the closed loop pdf under the 
assumption that the loop operator is contractive on an average. 
The proof of this claim and extension to dynamic systems will 
be considered in future work. 

II. PROBLEM FORMULATION AND ITERATION SCHEME 

Consider the feedback system shown in Figure 1. The input 
u belongs to a Banach space X (e.g., R") and is randomly 
distributed with probability measure jj^u- The assumption of 
a normed linear space is made to simplify the notions of 
derivative and confraction of the loop operator, but it may 
be possible to relax it to a metric space. 

Assuming fi^ is absolutely continuous with respect to 
the Lebesgue measure, a probability density fiinction (pdf), 
Pu{u) can be defined for u. The loop operator G is possibly 
nonlinear and maps X to itself Furthermore, we assume that 
G is contractive in the sense that G shrinks distances in the 



associated norm. We also assume that G is one-to-one and 
the derivative of G, dG exists and satisfies \\dG\\ < 1 which 
implies that G is uniformly Lipschitz with Lipschitz constant 
L < 1. Notice that the assumption of a single loop operator G 
is not restrictive since G can be thought of as a composition 
of several operators. 

The problem is to compute the pdf, Py{y) of the output y 
in an iterative fashion, without directly employing the closed 
loop solution y = G{I — G)^^u. For practical reasons, we 
restrict our treatment to finite approximations of the pdf's {i.e., 
discretized versions). This allows a gridding (box covering) 
of the space X and a finite matrix representation for dG. 
Recently, efficient computational methods using such box cov- 
erings, known as set-oriented numerical methods, have been 
developed and extensively applied for exploring the almost- 
invariant sets and invariant measures of dynamical systems 
[6], [7]. 

We formulate the iterative scheme for obtaining Px{x). 
Since y = G{x), Py{y) can be readily obtained from the pdf of 
X, Px{x) using the Perron-Frobenius theorem [8, chapter 17]: 

, ,      P.{G-'y) 
py^y^ = ur\—r- \0''~-\x=G-'-y 

Here the subscript on dG indicates where the derivative is 
to be evaluated and | • | denotes the absolute value of the 
determinant. Note that due to the one-to-one assumption on 
G, there is only one pre-image for y. Otherwise, the right hand 
side would involve the sum over all pre-images [8]. 

Using the Perron-Frobenius theorem on the closed loop 
relation x = [I - G)^^u, the pdf of x is given by 

pl'{x)=pu{{I-G)x)\I-dG\ (1) 

We define below a sequence iteration for p^ {x) that converges 
to the closed loop expression in Eq 1. The proof of conver- 
gence is given in Section III. 

We first describe the iterative scheme proposed by Kalmar- 
Nagy and Huzmezan for a simple scenario [3] . Assume that 
u,x,y are scalars and G is a static, one-to-one map. The 
proposed iteration scheme grids u into intervals, say of length 
5u, which leads to a discretization of the pdf as a histogram. 
The first iterate, p^ix) is taken as Pu{x), with 5x° = Su. Then, 
Py{y) is given by P^'|^~|'^^ with Sy° = \dG\5x°. The second 
iterate, pj. (a;) is obtained by making use of the fact that the 
area under the curve is conserved, ie, pu{u)5u = pl.{x)5x^. 
The interval 5x^ is taken as the sum Su + Sy°. The process 
is repeated until Px{x) converges. The iterations are described 
by 

x""    =   u + Gx" 

(5a;'=+i    =    6u + Sy'' 

Pl-^'ix) 

Sy''    =    IdGlSx" 
Pu{u)5u 

^.j.k+1 

(2) 

(3) 

(4) 

(5) 

When G is not one-to-one, the "overlaps of measure" in the 
X space should be taken care by adding them properly. 

We now present a generalization of the above iteration 
scheme and prove its convergence under the assumption that 
G is contractive and one-to-one. Let dG denote the derivative 
of G, M = dx/du and | • | denote the absolute value of the 
determinant. 

The main idea of the iterative method is to define a discrete 
dynamical system from the given static feedback system 
such that the stationary distribution of the Perron-Frobenius 
equation for the discrete dynamical system is the same as the 
desired closed loop distribution for the static feedback system. 
The key steps of method are as follows: 

1) Partition the u space into a collection of boxes Sj with 
center points Ui 

2) Assign the measure pi to the box Bi fi-om the pdf of u, 
i.e., Pi = p.u{Bi) 

3) Compute the image of each Bi iteratively under the 
assumption that the image set can be characterized by x 
and M = dx/du. This holds for sufficiently small Bi. 

4) Assign the measure pi to the (converged) image set in 
X space. 

The underlying assumption is that if the size of Bi is suffi- 
ciently small, the image set of Bi is also a box completely 
characterized by its center point, x and the linear operator, 
M = dx/du that captures the volume mapping from the u 
space to the x space. The probability density is assumed to be 
uniform with in each box for all variables. 

The following two maps are employed for the iteration: 

x'=+^    =   u + Gx'' 

M'=+^    =   I+{dG)M''. 
(6) 

(7) 

The initial conditions are x° = u and M° = I. The iteration 
of the center points of the boxes is captured by Eq 6 and the 
expansion of volume elements is captured by Eq 7 which is 
the iteration for M = dx/du. 

The pdf of X is successively approximated as 

Pxix") 
fcx        Pu{u) 

IM''! 

The output is given by y'' = Gx^ and the output pdf is given 
by p{yk) = rf(£lV) 

\dG\ 

III. PROOF OF CONVERGENCE 

Notice that 

= (^ G')w = (/ + G + G' + ... -f G^)u. 
i=0 

If G is linear, i.e., if dG is independent of x, a similar 
expression can be obtained for M*^: 

fc 
M'^ = ^ dG' = / -H dG -f dG^ -F ... -I- dG^ 

i=0 

However, we do not assume linearity of G. 
Since G is contractive, by the contraction mapping theorem, 

the map in Eq 6 converges to x* = {I - G)^^u. Since dG is 



Fig. 2,    Convergence of the iterates of pdf of x for the feedback loop with 
\/x 

also a contraction, the map in Eq 7 converges to M* = (/ — 
dG)"^ with dG evaluated at x*. Thus the pdf of a; converges 
to 

Pu{v.) 
Px{x*) = = p,{{I-G)x)\I-dG\ 

lil-dG)- 
which is the correct closed loop solution given in Eq I. 

Thus, we have shown point-wise convergence of the es- 
timated pdf of X to the closed loop pdf, pj' {x) at selected 
grid points. A well-known result due to Li (see [9] and [8, 
chapter 17]) guarantees the convergence of finite approxima- 
tions of pdf's to the continuous ones as the grid size becomes 
sufficiently small. 

Remark 1: The multidimensional generalization of the 
computational method proposed by Kalmar-Nagy and 
Huzmezan involves tracking the comer points of the boxes. 
The comer point information gives the edge length. The 
addition mle in Eq 3 is employed for each linear dimension 
which in turn gives, [M'^^^ |, the volume of the box in (fc+1)* 
step around a;'^"*''^ in proportion to the volume of the box 
around u. Employing Eq 7 in the iteration eliminates the 
need to keep track of the comer points since the expansion 
of infinitesimal volumes under the map can be computed as 
the determinant of M''+^ 

IV. EXAMPLE 

We now illustrate the method with a simple example. 
Consider the feedback system with G[x) = y/x. The pdf of u 
is given by Figure 2 shows the closed loop pdf of x and 
the iterates of the pdf converging to the closed loop solution. 

V. PARAMETRIC UNCERTAINTY IN THE LOOP OPERATOR 

We now consider the case when additional uncertainty may 
be present in the loop operator G. Suppose that G depends 
on a parameter 6 whose pdf is given by pe{d)- The measure 
on 6 induces a measure on G, JIG- As in Section II, we can 
again define an iteration on x^ and M*" with the difference 
being that G is drawn randomly at each iteration step. Let G^ 
denote the sample of G drawn at iteration step k according to 
liQ- Let dG'' denote the derivative of G*^. The iteration for a;'' 
takes the form 

X'=+I=M+GV. (8) 

This system belongs to the class of iterated random func- 
tions described in [4], [5]. For the system x^^'^ = feix'') 

where fg is a random map selected according to a given 
probability measure no, under the assumption that fg are all 
Lipschitz and contractive in an average sense, the existence 
of a stationary measure and the convergence are described in 
[4]. The meaning of contraction on an average has also been 
quantified in terms of the Lipschitz constants of fg. In [5], the 
contraction on average assumption is relaxed and the results 
are extended to more general random maps. 

VI. CONCLUSION 

Iterative methods for uncertainty propagation in feedback 
systems, together with graph decomposition methods and 
block-by-block propagation can lead to efficient computational 
methods for complex systems. We present here an iterative 
scheme to compute the pdf of the output from the pdf of the 
input for a nonlinear feedback loop. The convergence of the 
proposed scheme is shown under the assumption that the loop 
operator is a contraction. Possible extension to the case when 
there is additional parametric uncertainty in the loop operator 
is described. Future work will focus on a more rigorous 
development of the iterative method and include dynamical 
systems, parametric and initial condition uncertainty as well 
as integration with graph decomposition techniques and block- 
by-block propagation methods. 
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Abstract—This paper studies the effect of uncertainty, using 
random perturbations, on area preserving maps of K" to itself. 
We focus on the standard map and a discrete Duffing oscillator 
in R^ as specific examples. We relate the level of uncertainty 
to the large scale features in the dynamics in a precise way. 
We also study the effect of such perturbations on bifurcations 
in such maps. The main tools used for these investigations is 
a study of the eigenfunction and eigenvalue structure of the 
associated Perron-Frobenius operator along with set oriented 
methods for the numerical computations. 

I. INTRODUCTION 

Uncertainty is obviously of central importance for dy- 
namic and control systems both from a theoretical and 
a practical point of view. While this topic has received 
much attention in the control community, there is still 
much to learn about the effect of random perturbations 
on such systems. In this paper we focus our attention on 
perturbations of conservative system as a first step towards 
studying mechanical systems (including molecular systems) 
in the presence of uncertainty. An important aspect of our 
approach is to try to extract the key dynamical features that 
survive in a noisy environment. One can make the case that 
such features are the most important ones to compute. 

The specific context we work in is as follows. Let / : 
X -^ X be an area preserving map of a compact subset 
X of M" to itself Let B be the Borel-cr-algebra on X 
and n the standard volume measure on X. We model a 
perturbed version of the map / by a stochastic process 
which maps a point x e X near the image point f{x) 
with high probability. Formally, for a given perturbation 
size (5 > 0, we consider a stochastic transition function 
ps : X X B -^ [0,1] corresponding to a small random 
perturbation of / in the sense of [1], i.e.,  we require 

1) X i-» ps{x, B) to be measurable for each B e B; 
2) ps{x, •) to be a probability measure for each x € X; 
3) for all continuous functions g : X ^R 

lim sup 
^-"0 xex 

/ g{y)V6{x,dy) gim) = 0.    (1) 

A typical small random perturbation of / is given by letting 
ps{x,-)bc the uniform distribution on a 5-ball around f{x). 

Research partially supported by a Max Planck Research Award and 
NSF-ITR grant ACI-0204932. 

Throughout the paper, we focus on two example systems, 

1) the standard map 

x\ \ _ f x +ey + e'^is,s\T\{2'Kx), 
2/1  y      I y + ep.sm{2'Kx) 

(2) 

on the two-torus, as resulting from a symplectic time 
discretization of the ordinary differential equation for 
the pendulum. We fix the step size e = 1 and view ^i 
as a bifiircation parameter; 

2) and the Duffing map, 

xi\ ^ f x + ey + ^{lix-x'^), \   ,^. 
2/1/      \y + l{iJix-x^-{■iixi-x\) ) 

on E^, as resulting from applying the Newmark 
scheme to the Duffing equations (see, e.g., [10]). Here 
e is a fixed parameter (corresponding to the stepsize 
in the Newmark scheme) and /.t e IR is a bifurcation 
parameter 

A. Stochastic transition functions 

A measure /i on S is called invariant for a stochastic 
transition function p, if 

/ 
p{x,A) iJ,{dx) = ^jb{A) (4) 

for all Ae B. A transition function p : X x B ^ [Q,l]\s 
called reversible w.r.t an invariant probability measure ji, if 

/ p{x,B) fi{dx) = / p{x,A) i^{dx). (5) 
JA JB 

The value 

p{A,B) := j^^ l^p{x,B) n{dx) (6) 

is the probability to map from set A into set B in one step. 
The corresponding probability for the time reversed system 
is given by 

_ fi{B)p{B,A) 

A stochastic transition function with invariant measure // 
is called uniformly ergodic, if there are constants q < I and 
M > 0, such that 

||K(^,-)-Mll<Mg",    n = 0,1,2,..., (8) 



for all xeX. 
A typical small random perturbation of / is given by 

letting ps{x,-) be the uniform distribution on a (5-ball 
around f{x). This is an example of an absolutely continuous 
transition function, which generally is of the form 

ps{x,B)= /  ks{f{x),y)dfi{y), 
JB 

where k : X x X -^ [Q,co) is some suitable kernel. In this 
case, the transition function of the time reversed system is 
explicitly given by 

P5{x,A)^  f ks{f{y),x)dfi{y). (9) 
JA 

B. Macroscopic dynamics 

It is instructive to consider the situation when there is 
no noise, for an area-preserving mapping T (both of the 
maps introduced earlier fall into this category). In this case, 
the Perron-Frobenius operator, say acting on functions in 
I/^ is given by Pf{x) = foT"^ and its adjoint, Koopman 
operator by Uf = foT. These are both examples of the so- 
called "transfer operators" ([9]). The spectral properties of 
these can be related to phase-space structure of conservative 
maps. In particular, invariant sets of T can be obtained as 
level sets of functions in eigenspace at 1 of [/ (see e.g. 
[11]). In addition, invariant densities of T are functions in 
eigenspace at 1 of P. The operators P and U are unitary 
and thus their spectrum is confined to the unit circle in the 
complex plane. Their spectrum can be analyzed via study 
of a simpler, symmetrized operator {U + P)/2. Since P 
is normal, any eigenfunction / of P at eigenvalue A is an 
eigenfunction of U at eigenvalue A, the complex conjugate 
of A. In that case, we have 

l{u+p)f = ^f = Mm 
and thus / is an eigenvalue of the symmetrized operator 
(U + P)/2 associated with the eigenvalue Re(A). In the 
case when T is ergodic (and the eigenspace at 1 is one- 
dimensional), all of the other eigenspaces are at most two- 
dimensional. However, typical area-preserving maps have a 
more complicated structure where regular regions of peri- 
odic and quasi-periodic motion coexist with chaotic areas. 
An example of this is shown in Figure 1, for the standard 
map. In this case, the eigenspace at 1 can be obtained using 
the projection operator Pxf = (l/n) Yl^Zo f ° '^^ f- -^^ 
example of such computation is given in figure 2. 

In the presence of noise the decomposition of the state 
space of an area-preserving map into invariant sets with 
"regular" resp. "chaotic" dynamics, as described above, (cf 
Figure 1) is no longer possible. 

Due to the noise, the evolution may become transitive on 
the state space. However, for certain types of perturbations 
and if the perturbation is sufficiently small, certain invariant 
sets of the unperturbed map can still be recovered as almost 
invariant subsets. In fact, this is the more likely thing one 

Fig. 1.     Standard map: 500 iterates of 500 different initial conditions, 
chosen at random according to a uniform distribution, ii = 0.3. 

0.1       0.2       0.3       0.4       0.5       0.6       0.7       0.8       0,9       1.0 

Fig. 2.      Standard map: Invariant sets obtained from P^/, for / = 
cos{2TTy),ii = 0.3. 

will see in a more realistic noisy and uncertain model of a 
system. Intuitively, a set yl C X is almost invariant, if the 
invariance ratio of A, 

P5[A,A), (10) 

is close to 1, i.e. if the probability to stay within the 
set A under the evolution is high. We refer to [2] for 
a more formal definition. For the perturbed system, it is 
therefore natural to ask for a decomposition of the state 
space into almost invariant sets when one is interested in a 
more macroscopic and robust description of the dynamical 
behavior. Thus, we aim at finding sets A for which (10) is 
as large as possible. This question has actually been treated 
in [3], [4] in detail. It is a trivial (but important) observation, 
that 

ps{A,A)=n{A,A) = \{P6{A,A) +Pi{A,A)),    (11) 



i.e. when looking for sets that maximize ps{A, A), we might 
as well consider the transition function 

rs(x,A) = -{ps{x,A)+p5{x,A)), (12) 

which is reversible. 

C.  Transfer operators 

As mentioned before, spectral properties of transfer oper- 
ators can be used to explore transport in phase space. One 
possibility to identify sets with a large almost invariance ra- 
tio is via a spectral analysis of a transfer operator associated 
to the evolution law under consideration, see e.g. [2]. For 
a given ("pointwise") evolution law, an associated transfer 
operator describes the evolution of probability measures or 
densities on the state space. For a deterministic map /, the 
Perron-Frobenius operator P : M ^' M, 

Pfi{A) = ix{f-\A)),    AeB, (13) 

where, instead of L'^{M) here P is defined on M, the 
space of probability measures on {X, B). The corresponding 
transfer operator of a stochastic transition function ps is 
given by P<5 : A^ —> M, 

I Psn{A) = / ps{x,A)dn{x). (14) 

In the case that ps is absolutely continuous, we can 
equivalently consider Ps as an operator on L'^{X), and 
Ps : L'^ -^ L^ is given by 

{Psh){y) = jksif{x),y) h{x) dm{x). 

Note that for the standard inner product on L^, the adjoint 
of Ps is given by 

{Pl9){x) = Jks{f{x),y) g{y) dm{y). 

We first study an example of the Perron-Frobenius op- 
erator for a stochastic perturbation of a conservative map 
on a circle; specifically, we discuss the spectral properties 
of the Perron-Frobenius operator associated with rotations 
on the circle. In this example, spectral properties can 
be analytically computed and as a result are simple to 
understand. Let T : S^ -^ S^;e' = 6 + u, he a 
rotation on the circle, where a; is a constant. Note that 
this map preserves the Haar measure on the circle. The 
Perron-Frobenius operator associated with it is given by 
Pf(9) = f{6~uj). The eigenfunctions of F associated with 
eigenvalue exp(-i27rna;), n £ N are easily computed to be 
exp(z27rn^). These eigenfunctions span L^(5^). Consider 
the following stochastic perturbation of this conservative 
system: T^ : 6' — ^ -h w -f ^, where ^ is a random 
variable uniformly distributed on [-(5/2,(5/2], where (5 is 
a constant. The Perron-Frobenius operator associated with 

7> is P^!(Q) = i S% f{e-oj- Odt If we set f{e) = 
exp{i27rn9), we obtain 

1    /•'5/2 
Pf{e)    =    - /       exp{i2iTn{e -LJ- 0)d^ 

(> J-5/2 
1 

=    - exp(—i27rna;)exp(i27rn^) 
0 
rS/2 
/       exp{—i2'iTn^)d(, 

J-S/2 
_    sin(n7r5) 

nnS 
exp(—z27rna;) exp(i27rn^) 

(15) 

Therefore, exp{i2Trn9) are eigenfunctions of P^ associated 

with eigenvalue A„ = ^'"i"^'^^ exp(-t27rna;). For fixed n, 
if (5 -^ 0, A„ —> 1. In figure 3 we show eigenvalues of P^ 
for u) = •7r/320,5 = 0.01. For large n the eigenvalues tend 
to zero. The eigenvalue with the largest modulus smaller 
than 1 is Ai = ^^^^^ exp(-i27rw), with the associated 
eigenfunction exp(i27r0). The adjoint operator of Pj is the 

/ 
-/ 
/ 

/'' ^■^" 

^ 

\ 

.--■''"T^ 

Fig. 3. Eigenvalues of Pj for w = 7r/320, (5 = 0.01 shown as full solid 
cirelcs inside the unit cirele 

Koopman operator V(_]{6) = \ fj^^ f(9 + uj + ^dC In 
this case the Perron-Frobenius and Koopman operators are 
normal and thus the symmetrized operator [P^ + U^)I2 
has eigenvalues (sin(n7r5)(n7r(5)cos(27rnw)) and the same 
eigenfunctions as P^. For small w the second largest eigen- 
value is obtained for n = 1. The associated eigenfunctions 
are given by ci sin(27r0) H- C2 cos(27r0). Clearly any two 
arcs that split the circle in two are almost invariant sets. 

For a reversible and uniformly ergodic stochastic transi- 
tion fiinction p, the essential spectral radius of the corre- 
sponding transfer operator P : L^ —» L^ is bounded away 
from one, i.e. cr(P) C [i,r] U {1} with r < 1; see [6]. 
By combining Theorem 3.1 and Corollary 4.33 of [6], we 
obtain: 

Proposition 1 Let the stochastic transition function p be 
reversible and uniformly ergodic. Assume that 

<7(P)c[^,r]U{A2,l}, (16) 



with r < A2 and A2 a simple eigenvalue of P. Then for any 
set Ae A 

1-X2<P{A,A^)+P{A^,A)<1-KX2,        (17) 

where 0 < K < 1. 

In fact, one has (see [6]) 

/   V2dfl- 
JA 

KA) 
M^-)L^^'^' 

where V2 is the eigenvector of P corresponding to the 
eigenvalue A, i.e. K is measuring the "L^-deviation" of V2 

fro"^ \Jl^XA - \f^)XAO. So, roughly speaking, the 
maximal almost invariance ratio of any set A is given by 
(A2 + l)/2. 

Also, the form of K suggests a strategy for the identi- 
fication of A, given V2: the quantity will be maximized, 
if the set A is defined to be the subset of X, on which 
V2 is positive. This strategy of identifying almost invariant 
subsets of phase space has successfially been applied to the 
identification of conformations of molecules, see [5], [12]. 

In Figure 4 we show six eigenvectors of the reversibilized 
discretized transfer operator (of the unperturbed system). 
Clearly the almost invariant sets defined by the positive 
resp. negative components of these modes are in very good 
agreement with invariant sets of the unperturbed system (c.f 
Figure 1) for the eigenvectors V2,- ■ ■ ,ve. The eigenvector 
V7 decomposes the "chaotic sea" itself 

D. Discretization 

Numerically, we need to work with a finite dimensional 
subspace Ld of L^ and a corresponding approximation of 
P on Ld. A common ansatz is to let Ld be the subspace of 
step-functions that are piecewise constant on the elements 
of a partition of X. More precisely, let V — {Bi,..., Bd} 
be a finite subset of B such that ^{Bi n Bj) = 0 for 

Bi,Bj e V,Bi yi Bj and Uti ^i = ^- Let Ld = 
spanlxBi, • • •, XB,J and let Qa : L'^ -* Ld be the orthog- 
onal projection onto Ld- The discretized transfer operator 
Pd is defined as 

Pd = QdPs- (18) 

It is easy to see (see e.g. [2]) that in this case the discretized 
operator can be represented by a stochastic matrix with 
entries 

Pij = 
mif-\Bi)nBj) 

m{Bi) hJ 1, (19) 

For bounded perturbations of the underlying map /, i.e. if 
p{x, •) has sufficiently small support, then this transition 
matrix is sparse and even if the number d of partition 
elements is quite large, a couple of eigenvalues and cor- 
responding eigenvectors can efficiently be computed by 
Amoldi methods as e.g. implemented in ARPACK [8] 
(which is available as the eigs command in MATLAB). 
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Fig. 4. Standard map: eigenvectors D2,...,^7 to the six largest 
eigenvalues (exeept 1) A2 < • • ■ < A7 of the reversibiUzcd discretized 
transfer operator of the unperturbed system on a partition of 2^^ boxes, 
^ = 0.3. 

As an example, again we have a look at the standard map. 
We consider the reversibilized discretized transfer operator, 
which in this case is given by the matrix Rd = {Pd+Pj)/2 
and the decomposition of the state space given by the sign 
structure of the eigenvector corresponding to the second 
largest eigenvalue. In Figure 5 we show this eigenvector, 
computed on four different partitions of the phase space. 
Note that the overall shape of the decomposition is already 
quite well resolved on a partition with only 256 boxes. 

II. SPECTRAL PROPERTIES OF THE TRANSFER 

OPERATOR 

A.  The dependence of the spectrum on the perturbation size 

Let us focus on a particular perturbation of the given map 
/: We consider 

1 
h{I{x),y) = 

KBM) XBs{f{x)){y)       (20) 

In [7] we prove: 
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Fig. 5. Standard map: eigenvector to the second largest eigenvalue of the 
rcvcrsibilizcd discretized transfer operator of the unperturbed system for 
different partitions, fj, = 0.3. 

Proposition 2 If A is an invariant set of the unperturbed 
system, then the probability ps{A, A'^) to map from A into 
its complement A'-' under the perturbed system can be 
estimated as 

pM,A^)<'^^^^5^0i6^) (21) 

as 5^Q. 

Combining this estimate with Proposition 1, we obtain 

Theorem 1 Let A be an invariant set of the unperturbed 
map f. Assume that the reversibilized small random per- 
turbation rs = \{ps -\- Vs) of f is uniformly ergodic. Then 

length(5^) 
I-A2 < 

liiAMAO) 
5 + 0{5^ (22) 

Proof Note that/.i(^)+//(^'^) = 1 and length(5^) = 
length(a^<^). ■ 

Note that the constant in c^ relates the length of the 
boundary of A to its volume. In particular this means that 
a larger eigenvalue corresponds to an almost invariant set 
of larger volume. So in this sense larger eigenvalues detect 
"more important" almost invariant sets. 

In Figure II-A we show how the four largest real eigen- 
values of the discretized transfer operator (14 subdivisions, 
2^^ boxes) for the standard map depend on the perturbation 
size 5. For the computation of the transition matrix we used 
16 test points in a regular grid in each box of the covering 
and 256 points on a regular grid in each (5-neighborhood of 
the corresponding image points in order to sample ps{x,-). 

Note that this numerical result is in very good agreement 
with Theorem 1. 

ctandatt) map, algenvalues vs perturbation size, depth 14,16/256 GrId/lnnarGrid 

Fig. 6.     Standard map: the four largest real eigenvalues (except 1) in 
dependence of the perturbation size. 

B. Spectrum for a fixed value of the bifurcation parameter 

Suppose that we are given a symmetry transformation 
K: X —^ X, such that K^ = id and the map / satisfies the 
equivariance condition 

Kof = f-'oK. (23) 

Define the action of K : L^ ^ L^ by 

Kh = ho K. 

Proposition 3 Suppose that the kernel k satisfies 

k5{f{x),y) = ks{Kof-\y),K{x)), (24) 

then 
KPS = Pi K. (25) 

Proof:  We compute 

PjKh[x) = j ks{f{x),y) h o K{y) dii{y) (26) 

=     ks{ii° r^{y),K'{x)) ho K{y) dp,{y) (27) 

= /ks{K{y'),K{X)) hoKo f{y') df^iy'), (28) 

where the latter equality follows from the change of vari- 
ables y' = f~^{y) and the fact that / is area preserving. 
Using the equivariance condition (23) we continue 

= J ks(K{y'), Kix)) hof-'o K{y') dti{y') 

(29) 

= jks{y,K{x))hor\y)dti{y) (30) 

=  / ks{f{y),K{x)) h{y) dix{y) 

= Psh o K{X) = KPsh{x), 

(31) 

(32) 



where, again, we performed two changes of variables, 
exploiting the area preservation property of K. ■ 

Corollary 1 Let h e L'^ be an eigenfunction of Ps to the 
pT 

6 eigenvalue X, then nh is an eigenfunction of Pj to the 
eigenvalue A. 

Numerical support for this Corollary is shown in Figure 7. 
We computed the transition matrix on a covering of 2^^ 
boxes, using 100 points on a regular grid—without any 
perturbation (i.e., 5 = 0), and for e = 0.1 and n = —0.2. 
The figure shows e"^K/i in the left column, where h is 
the eigenvector of Ps and the eigenvector of Pj in the 
right column, both for the same eigenvalue A = 0.9902 + 
i 0.0647. 

^canAh) realth^t 

iTiag(B'':;h) 

r-# w^ 

Fig. 7. Duffing map: Comparison of e^'^Kh (left column), where h is 
the eigenvector of Ps, and the corresponding eigenvector of Pj (right 
column). 

C. Spectrum in dependence of the bifurcation parameter 

As a bifurcation parameter of the map under consider- 
ation is varied, it is natural to expect the spectrum of the 
(discretized) transfer operator to change. In particular, we 
expect the corresponding eigenmodes to reflect changes in 
the global dynamical behavior of the system. As an example 
situation we consider the dynamics of the Duffing map as 
the parameter /i is varied. It is well known that at p = 0 
the origin undergoes a pitchfork bifurcation, leading to two 
stable equilibria for p > 0. In Figure 8 we show how part 
of the spectrum of the reversibilized discretized transfer 
operator depends on /i € [-0.35,0.7]. 

One particular eigenfunction (associated to the eigenvalue 
represented by the red curve in Figure 8) appears to become 
the dominant one as n changes from -0.35 to 0.7. For 
positive /z, this positive resp. negative components of this 
eigenfunction are associated to neighborhoods of the two 
equilibria which are created in the pitchfork bifurcation, 
bounded by the homoclinic orbits of the origin. For negative 
/x however, this geometric situation is not present, but still 
the sign structure of this eigenmode defines a qualitatively 
similar decomposition of the state space into two almost 
invariant sets. 

III. CONCLUSIONS. 

In this paper we have shown that one can effectively 
use the theory and computation associated with the Perron- 
Frobenius operator to study the effect of uncertainty on 
area preserving maps and illustrated the methods with the 
standard map and a discrete Duffing oscillator. The level of 
uncertainty is related in a quantitative way to the large scale 
features, often the ones that are the most important to first 
compute. It was also shown the way in which uncertainty 
affects the bifiircations of such maps. 
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Abstract. 

This report describes the form of the dynamical systems involved in computational chemistry and 
molecular modelling and points out the avenues where methods of uncertainty analysis and uncertainty 
propagation may be usefully applied. Specific possibilities include the quantification of uncertainty in the 
semi-empirical potential energy functions in classical molecular dynamics and the assessment of uncertainty 
in quantum molecular dynamics (Car-Parrinello molecular dynamics) due to the incomplete knowledge of 
the exchange correlation functional. These can have bearings on atomistic simulation in general. In relation 
to this, two example dynamical system definitions are given which may be starting points in the 
investigation of the Dellnitz-Preis and polynomial chaos methods in this area. 

1. Introduction. 

Experimental values of physical quantities of a many-particle system can be found as an ensemble 

average. Experimental systems are so large that it is impossible to determine this ensemble average by sum- 

ming over all accessible states on a computer. There exist essentially two methods for determining these 

physical quantities as statistical averages over a restricted set of states: the molecular dynamics (MD) and 

Monte Carlo (MC) methods. Suppose we have a random sample of, say, 10^ configurations of the system 

which are all compatible with the values of the system parameters. For such a large number we expect aver- 

ages of physical quantities over the sample to be rather close to the ensemble average. It is unfortunately 

impossible to generate such a random sample; however, we can generate a sample consisting of a large num- 

ber of configurations which are determined successively from each other and are hence correlated. This is 

done in molecular dynamics and Monte Carlo methods. Our focus in this report is on molecular dynamics. 

Molecular dynamics is a widely used method for studying classical many-particle systems. It con- 

sists essentially of integrating the equations of motion of the system numerically. It can therefore be viewed 

as a simulation of the chemical or molecular system as it develops over a period of time. The system moves 

therefore in phase space along its physical trajectory as determined by the equations of motion. The great 

advantage of MD is that it not only provides a way to evaluate expectation values of static physical quanti- 

ties; dynamical phenomena such as transport of heat or charge, or relaxation of systems far from equilibrium 

can also be studied. 

The remainder of this report is organised as follows. Section 2 describes classical molecular 

dynamics and points out avenues for uncertainty analysis in such calculations. Section 3 describes quantum 



molecular dynamics in the context of atoms in molecules. The verlet algorithm for classical and quantum 

molecular dynamics simulations, a symplectic integrator, is described for the situation with holonomic con- 

straints. The importance of uncertainty analysis due to the inexact knowledge of the exchange correlation 

functional is emphasised a the most important problem to be tackled either by polynomial chaos or any other 

method of uncertainty propagation. Section 4 describes molecular systems, in particular the nitrogen mole- 

cule and the CS2 trimer, which can be used as model cases to study different methods of uncertainty analysis 

- Dellnitz-Preis graph theoretic methods or stochastic galerkin methods. 

2. Classical Molecular Dynamics. 

Consider a collection of A'^ classical particles. The particles interact with each other via an interac- 

tion potential which is the negative gradient of a force-field. If the internal force acting on particle / be 

denoted by F.{R) where R comprises the position coordinates r,- of all particles. In the absence of gravita- 

tional forces and other forces due to boundaries, the equations of molecular dynamics are 

in which /n,- is the mass of particle i. The solutions of the equations of motion describe the time evolution of 

a real system although the description of equation (1) is approximate for the following reasons: 

(a.) It is a classical description as per Newton's laws of motion. The importance of quantum effects depends 

strongly on the particular type of system considered and on the physical parameters (temperature, density, 

etc.). In Section 3, quantum molecular dynamics is described in the context of density functional theory. 

(b.) The forces between the particles are not known exactly; quantum mechanical calculations from which 

they can be determined are subject to systematic errors as a result of the neglect of correlation effects, as we 

have seen in previous chapters.Usually these forces are given in a parametrised form, and the parameters are 

determined either by ab initio calculations or by fitting the results of simulations to experimental data. 

In a molecular dynamics simulation, one initialises a system, starts the simulation, and lets the sys- 

tem reach equilibrium. The number of particles and the form of the interaction are specified. The particles 

are assigned positions and momenta. If a Lennard-Jones potential, which is discussed below, is used, the 

positions are usually chosen as the sites of a Bravais face centered cubic (fee) lattice [1], which is the ground 

state configuration of the Lennard-Jones system. The velocities are drawn from a Maxwell distribution at the 

specified temperature. The numerical solution of molecular dynamics is achieved by symplectic integrators 

such as the Verlet algorithm [2]. In Section 3.1 a description of the Veriet method in the presence of holo- 

nomic constraints is given. 



The development of force fields is based on a judicious combination of accurate electronic struc- 

ture calculations and some empiricism. The empiricism in the force fields results in some uncertainty whose 

propagation in the molecular dynamics simulation needs to be quantified. Over the years, a number of poten- 

tials such as bond-order potentials, embedded atom potentials, and simple pair potentials have been devel- 

oped; as, e.g., see equations (5) - (10) in reference [3]; a full description of empirical potentials may be 

found in Chapter 4 of reference [4]. A famous force field is the Stillinger Weber potential used in the molec- 

ular dynamics calculations of Silicon and other semiconducting systems. The parameters in these force 

fields are determined by fitting to experimental structure, phonon spectra, and mechanical properties. Uncer- 

tainty in these fitted parameters can have an impact on the computed properties obtained from simulating 

equation (1). The use of polynomial chaos in order to assess the propagation of uncertainty in molecular 

dynamics with respect to the uncertain parameters in the interatomic potential of force-fields is an as yet un- 

investigated research problem. 

An example of an interatomic force-field is the negative gradient of a van der Waals potential fiinc- 

tion, the Lennard-Jones 12-6 function. The Lennard-Jones 12-6 fiinction takes the following form 

where the two parameters are the collision diameter o and the well-depth e. The effect of uncertainty in o 

and e on molecular dynamics is worthy of investigation by polynomial chaos methods. Another challenging 

problem is the application of polynomial chaos methods to molecular dynamics in the context of the Still- 

inger-Weber potential; see equafions (4.121) - (4.123) in reference [4]. 

3. Quantum Molecular Dynamics: Atoms in Molecules. 

Given a diatomic molecule AB and its ground state electron density p^gir) obtained by the stan- 

dard Hohenberg-Kohn-Sham density functional theory (DFT) [5], we seek to solve the optimisation problem 

minimise E/p/,R^) + Ejj(Pij;Rg), (3) 

subject to 

PAB('-) = PAi'-) + PBi'-)     Vr, (4) 

in order to determine p^{r) and Pg{r); 2?^ and Rg, are held fixed, and are the respective nuclear coordinates 

of the atoms A and B for a given intemuclear separation. E^ and Eg are the total energy functionals of atoms 

A and B. In terms of the effective single-particle orthonormal orbitals {\)/; (r)} and {v, (/•)} , 



k 

and 

where n]^ and nf are the occupation numbers for the one-particle wave-functions \|/^(/-) and y^(/-) respec- 

tively. The Kohn-Sham total energy functional for each isolated atom is given by 

k 

and 

5r^  5, xs*r   h   „2"l   B, , ,      2„ f PB('') 

where e is the electronic charge, h is Planck's constant, m the electronic mass, and Z^ and Z^ are the respec- 

tive atomic numbers of^ and B. E^^^ is the exchange correlation functional. The spin orbitals must satisfy the 

orthonormality constraints 

i^twf) = hi (9) 

and 

<vf|v|/f> = 5„. (10) 

The solution of the optimisation problem given by equations (2) and (4) may be achieved by quan- 

tum molecular dynamics via a slight modification of the dynamical simulated annealing method of Car and 

Parrinello [6]. This requires the construction of a dynamical Lagrangian which includes the electronic wave 

functions and their time derivatives as the variables with respect to a fixed internuclear separation. This leads 

to a classical mechanics problem with the sum of the energy functionals of equations (7) and (8) acting as a 

potential. If a friction term is then added to the equations of motion of this classical system, the degrees of 

freedom will come to rest after some time, with values corresponding to the minimum of the classical poten- 

tial, which is the energy of the quantum system at the equilibrium configuration of the nuclei. It is also pos- 



sible to set the frictional force to zero in order to simulate the system at nonzero temperature. The 

Lagrangian is given by 

k k 

k    I 

IlAf;[<M/K> - 5,,] + JK^B('-)[P,('-) + PijCO - PABW'idr 
k    I 

(11) 

where \Jij and ^i^ are small masses and M^ and Mg are the respective masses of the nuclei of v4 and B respec- 

tively. A'^i, Afi, and V^g{r) are the Lagrange multipliers which enforce orthonormality and the atoms in 

molecule constraint of equation (4). There is no term in the Lagrangian of equation (11) that pertains to Cou- 

lombic repulsion between the nuclei of ^ and B because it is a constant at fixed internuclear separation. The 

details of the kinetic energy of the electrons do not matter; the fictitious masses [i^ and ^.^used in the kinetic 

energy term can be set to unity. If friction is included into the equations of motion, the particular values of 

the electronic and nuclear masses do not matter as the kinetic energy is zero at the minimum of the potential 

of the Lagrangian of equation (11). The Euler-Lagrange equations corresponding to the first variations of the 

functional of equation (11) are given by 

i^A^i 
3VA. 

£^({¥f (/•)}, RA) + lA^/WvA'-) + J^^fiCr) f-APA(^) dr (12) 

and 

—SPB('-) 
^"Vk 

dr (13) 

The time integration of the quantum molecular dynamics equations (12) and (13) can be undertaken by the 

use of Verlet's method. 

3.1 Verlet's Method for Constrained Dynamics. 

Verlet's method is widely used for the simulation of many-particle dynamics in the computer simu- 

lation of liquids [2]. Suppose there are N particles with R denoting the position coordinates r,- of all the parti- 

cles. Consider the dynamics 



,2 

-^r.{t) = F.(R) (14) 
dt 

where F; is a force-field. Verlet's method in the absence of any constraints on the particles is the recurrence 

relation 

r.{t + h) = 2r.{t)-r.{t-h) + h^F,lr{t)] (15) 

which is accurate to 0(h'^) and wherein r.{t) is the position of the /th particle at time t = nh where h is the 

time-step and n is an integer. Suppose M constraints, c,^(R) = 0, ^ = 1,..., Af, are imposed upon the parti- 

cles. The constraint force acting on the particle is 

X h'^rPiR) (16) 
i= 1 

where the {^^j are the Lagrange multipliers to be determined. At time t = nh we have at our disposal the 

positions at times / and t-h. First, one calculates new positions r,.(f + h) ignoring the constraints according 

to 

r^it + h) = 2r,.(0-r,.(f-A) + /!V,.[/-(0] (17) 

and the corrected new positions are given by 

r,.(r + h) = ~r.{t + A) - X h'^rpW (18) 
M 

k= 1 

where the {X/^} are found by an iterative procedure. The iterations are numbered by an index /. In each itera- 

tion, a loop over the constraints k is carried out, and in each step of this loop, the Lagrange multiplier X;^ and 

all the particle positions are updated. The positions are updated according to 

r".'''' = rf-h\^,!^V,p,(R(t)). (19) 

The parameter X^'^ is found from a first order expansion of a^(R(t)) and requiring that the latter vanishes: 

a.lR"'") = c.iR"") - J^W,p,(R''"')W,p,(R{t)) = 0 . (20) 

This leads to 



^W = _ ^J^_J _. (21) 

h^\y,'^rPkiR''")'^rpmt))\ 

Each step will therefore shift the positions more closely to the point where they all satisfy the constraint. The 

iterations are stopped when all the constraints are smaller in absolute value than some small positive number. 

3.2 Investigation of Uncertainty in the Exchange Correlation. 

Using polynomial chaos to study the propagation of uncertainty in Car-Parrinello calculations is a 

good idea. But, it cannot be done without an understanding of the uncertainty in the density functional. We 

suggest that one considers using the semi-empirical density fiinctionals that the chemists have constructed 

by fitting a guessed at form with parameters to the results of configuration interaction computations for small 

systems [4,7]. This can be taken as a standard for comparisons. Then the various physically motivated func- 

tionals would deviate fi-om that standard, and one could study the propagation of those deviations through 

the Car-Parrinello computation. It has become apparent to solid-state physicists that no fiinctional or com- 

putational method that does not treat exchange exactly is to be talcen seriously. This is an excellent problem 

for uncertainty analysis in molecular modelling. 

4. Molecular Systems. 

Interactions in molecular systems can be divided into intra-molecular and inter-molecular ones. 

The latter are often taken to be atom-pair interactions. The intra-molecular interactions, i.e., the interactions 

between the atoms of one molecule, are determined by chemical bonds and are therefore not only strong 

compared with inter-molecular interactions (between atoms of different molecules) but also include oriental 

dependence. A brief description of intra-molecular degrees of freedom and interactions is as follows. 

First of all, the chemical bonds can stretch. The interaction associated with this degree of freedom 

is usually described in the form of a harmonic potential for the bond length / 

Vs,retcH(l)-\^sil-lof (22) 

where IQ is the equilibrium bond length. 

Now consider three atoms bonded in a chain-like configuration A-B-C. This chain is characterised 

by a bending or valence angle cp which varies around an equilibrium value cpg and the potential is described 

in terms of a cosine 

^yalenceW  = -Ctp[COS((p - (Pg) + COs((p + (pg)] (23) 



where the equivalence of the angles cpg and -cpg is taken into account. 

Finally there is an interaction associated with chain configurations of four atoms A-B-C-D. The 

plane through the first three atoms, A, B, and C does not in general coincide with that through B, C, and D. 

The torsion interaction is similar to the bend interaction, but the angle, denoted by 0, is now between these 

two planes 

Vtorsion^^) = -ar[cos(e-eo) + cos(e + eo)] (24) 

Characteristic vibrations associated with the different degrees of fi-eedom distinguished here can be derived 

from the harmonic interactions - the fi-equencies vary as the square root of the a-coefficients. In general the 

bond length vibrations are the most rapid, followed by the bending vibrations. In order for molecular 

dynamics simulations to be accurate, the time step for integration should be chosen smaller than the fastest 

degree of fi-eedom. But this degree of freedom will vibrate with a small amplitude, because of the strong 

potential, most of the computational time in molecular dynamics simulations will be consumed by those 

parts of the motion which are not expected to contribute strongly to the physical properties of the system. 

Moreover, if there is a clear separation between the time-scales of the various degrees of freedom of the sys- 

tem, energy transfer between the fast and slow modes is extremely slow, so it is difficult, if not impossible, 

to reach equilibrium within a reasonable amount of time. It is in such instances of molecular dynamics that 

graph-theoretic methods for the identification of almost invariant sets can simplify and accelerate conver- 

gence to equilibrium [8]. 

4.1 Direct Approach for the Nitrogen Molecule. 

A good base case for investigating methods of uncertainty analysis is molecular dynamics of the 

nitrogen molecule N2 in the context of the rigid molecule approximation. In this approximation molecules 

are treated as rigid bodies whose motion consists of translations of the centre of mass and rotations about 

this point. The forces acting between two rigid molecules are usually composed of atomic pair interactions 

between atoms belonging to different molecules. The total force acting on a molecule determines the fransla- 

tional motion and the torque determines the rotational motion. The N2 molecule consists of two nitrogen 

atoms, each of mass 14 atomic mass units (amu) and whose separation d is kept fixed in the rigid approxima- 

tion. The coordinates of the molecule are the three coordinates of the centre of mass and the two coordinates 

defining its orientation. The latter can be polar angles but here we shall characterise the orientation of the 

molecule by a unit normal pointing h from one atom to the other. 

The motion of the centre of mass of the molecule is determined by the total force F/gj acting on the 

particular molecule. This force is the sum of all the forces between each of the two atoms in the molecule 

and in the remaining molecules. The atomic forces can be modelled by a Lennard-Jones interaction with the 



appropriate atomic nitrogen parameters a = 3.72 Angstroms and z/kg = 37.3 Kelvin [9] where kg is the 

Boltzmann constant. The equation of motion for the centre of mass i?^,^ is then 

Ren, = F,^, (25) 

which can be solved in exactly the same way as in an ordinary molecular dynamics simulation. The motion 

of the orientation vector it is determined by the torque x with respect to the centre of the molecule which is 

given in terms of the forces F^'^ and F^^^ acting on atoms 1 and 2 respectively. 

T = (rf/2)nx(F"'-F'^'). (26) 

The torque changes the angular momentum L of the molecule. This is equal to 7(0, where / is the moment of 

inertia equal to md^ and co is the angular frequency vector whose norm is the angular frequency and whose 

direction is the axis around which the rotation takes place. Note that x is not necessarily parallel to CO. The 

equation of motion for the angular momentum is 

X = /(b (27) 

and we note that the angular frequency co is in turn related to the time derivative of the direction vector h as 

-^« = coxn (28) 
at 

Combining equation (27) and (28), the molecular dynamics equation is 

,2 2 
——n = cox(coxn) + xxh/I = -co n + xx«// (29) 
dr 

and this equation of motion leaves the norm of the direction vector n as it should. 

For general molecules, there will exist an extra degree of freedom: the angle of rotation around a 

molecular axis - the third Euler angle, which is denoted as y. The straightforward procedure for solving the 

equations of motion is to calculate the principal angular velocity co in terms of the time derivatives of the 

Euler angles. The Euler equation of motion gives the rate of change in co in terms of the torque. The time 

derivatives of the Euler angles can be found again from co, and these can be used to calculate the new atomic 

positions. There is however, a problem when the Euler angle 9 is zero, as in that case the transformation 

from 0) to the time derivatives of the Euler angles becomes singular. The most efficient method is to use the 

quaternion representation which avoids the instability resulting from this singularity. In the quaternion 

method, the orientation of the molecule is represented in terms of a four-dimensional unit vector rather than 

three Euler angles [II]. 



10 

4.2 The CS^ Trimer. 

A more complicated example is the trimer molecule CS2 [12]. The linear geometry of this molecule 

is in principle imposed automatically by the correct bond constraints between the three pairs of atoms. How- 

ever, the motion of this molecule is described by two positional degrees of freedom: two to define the orien- 

tation of the molecule and three for the center of mass position. The three atoms without constraints have 

three degrees of freedom and if three of these are eliminated using the bond constraints, we are left with six 

degrees of freedom instead of the five required. A procedure is to fix only the distance between the two sul- 

phur atoms 

|'-^i)-''^(2)|   = d (30) 

and to fix the position of the C-atom by a linear vector constraint 

(r^,„ + '-^i,)/2-rc = 0 (31) 

adding up to the four constraints required. For a molecule, in general a number of atoms forming a backbone 

set is identified and these are fixed by bond constraints (the two sulphur atoms in this example). In the case 

of a planar structure we take three non-colinear atoms as a backbone. These atoms satisfy three bond con- 

straints and the remaining atoms are constrained linearly. In a three-dimensional molecular structure, four 

backbone atoms are subject to six bond constraints and the remaining ones to a linear vector constraint each. 

In the constraint procedure, the degrees of freedom of the non-backbone atoms are eliminated so that the 

forces they feel are transferred to the backbone. This elimination is always possible for linear constraints 

such as those obeyed by the non-backbone atoms. 

The equations of molecular dynamics for this system may be written down now by introducing 

Lagrange multipliers X and |X for the bond and linear vector constraints respectively. 

2 

m V 

2 
d r 

= Fi-2X(r,„-r,„)-^ (32) 

c.(2) 

m 
"dt S—'    =^2 + 2X(r^..-V)-2 ^^^^ 

2 

mc-^^ = Fc + \i (34) 
d? 

The linear constraint of equation (31) is now differentiated twice with respect to time and using the equa- 

tions of motion 



ftlf' 

^c+^^ = 2;^(^I+^2-^^) (35) 

is obtained. We can thus eliminate the multiplier p, and obtain the equations of motion for the S-atoms 

2 

'"ST 

2 
d r 

m 
~df 

2      =0-2¥f2"2F^>"Ar^C + 2X(.,<„-V>) (37) 

where M-2m^ + m(~. It is not possible to eliminate the multiplier X. Therefore, the molecular dynamics 

equations for CS2 involve integrating equations (36) and (37) subject to the constraint of equation (30). This 

is achieved by the modified Verlet algorithm of Section 3.1 with the atomic forces Fj and F^ being appropri- 

ately negative gradients of the interatomic potential [13]. 
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Symmetry-Breaking and Uncertainty Propagation in a Reduced Order Tiiermo-acoustic Model 

Gregory Hagen    Andrzej Banaszuk 

Abstract—We present a thermo-acoustic model on a cylin- 
drical, or annular, geometry, capable of modeling instabilities 
of tangential acoustic modes. The model accounts for non- 
uniform density, damping, rotational flow, and heat-release 
coupling. It is shown that deliberately introducing spatial 
variations in some quantities has a similar effect to adding 
damping to the system. The effects of these symmetry-breaking 
conceptes are evaluated on the model through linear analysis 
and the net amount of additional damping is computed. We 
show how various symmetry-breaking concepts are robust with 
respect to the uncertainty in the model parameters and we 
examine propagation of uncertainty with respect to a recently 
defined measure of uncertainty. 

NOMENCLATURE 

A = state space matrix 

a = speed of sound 

e = internal energy per unit volume 

K = heat-release gains 

P = pressure 

Q = volumetric heat-release 

r,e = radial, tangential (space) variables 

R = mean radius 

t = time 

u = velocity vector 

Ur,UB = radial, tangential velocities 

V2{TU) = uncertainty metric 

X = state vector in Galerkin truncated model 

Y = acoustic boundary admittance 

7 = ratio of specific heats (= 1.4) 

P = density 

<P = tangential (Fourier) basis function 
i, = radial basis function 

i = damping constant 

(•),(•)' = mean, perturbation quantities 

(•) = normalized quantities 

(•)o,(-U = spatially mean and m-periodic quantities 

I. INTRODUCTION 

Thermo-acoustic instabilities in gas turbine and rocket 
engines develop when acoustic waves in combustors couple 
with an unsteady heat-release field in a positive feedback 
loop. For a summary of active control of thermo-acoustic 
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instabilities see [3]. Thermo-acoustic modeling and control 
is well-studied for axially extended combustion chambers, 
as in [5], [7], [14], [10], where the acoustic to heat- 
release coupling is dominated by longitudinal acoustic 
modes. However, comparably less attention has focussed 
on thermo-acoustic modeling in combustion chambers with 
annular, or cylindrical geometries. In the present work, we 
develop a low-order thermo-acoustic model on a circular 
geometry, somewhat similar to that of [1]. 

Often thermo-acoustic instabilities are dominated by a 
few natural acoustic modes, which can accurately be mod- 
eled with a low-dimensional model. Accurate heat-release 
models are difficult and time-consuming to implement. A 
low-order thermo-acoustic model, properly calibrated with 
acoustic data, can provide insight into the possibly dele- 
terious acoustic-heat-release coupling and may provide a 
platform for fast evaluation of preliminary design concepts. 

In this work we define symmetry-breaking as the de- 
liberate introduction of spatial variations in the system pa- 
rameters in order to change the stability properties. Recent 
work has focussed on analysis of heterogeneous distributed 
systems [6],[9],[11]. Symmetry-breaking is commonly ref- 
ered to as mistuning in the literature regarding the dynamics 
of arrays of turbine blades on a disk. Studies of stability 
properties of turbine blade flutter through the introduction 
of spatial nonuniformities has appeared in [2], [16]. Optimal 
mistuning in arrays of bladed disks has appeared in [15], 
[17]. A study of the effects of asymmetry on compressor 
stall inception has appeared in [8]. 

As in the case of mistuning in arrays of bladed disks in 
turbines, this form of passive control is often more feasible 
than implementing an active control scheme. This may 
also be true for the case in combustion chambers, where 
high temperatures prohibit adequate sensing and may dam- 
age the actuators required for active control. Furthermore, 
symmetry-breaking can be a more cost-effective means of 
stability enhancement. 

In the present work we develop a thermo-acoustic model 
capable of describing oscillations and passive conttol of 
tangential modes using symmetry-breaking concepts. The 
model is derived in section II, where we describe the param- 
eters available for symmetry-breaking for stability enhance- 
ment. The low-order model is constructed by Galerkin pro- 
jection and truncation. Linear analysis of stabilization via 
symmetry-breaking is discussed in section HI. Parametric 
uncertainties are modeled as spatially varying components 
within the model. The propagation of these uncertainties 



to the amplitude of pressure mode oscillations is described 
in terms of a recently defined measure of uncertainty [12], 
which is discussed in section IV. 

II. MODEL DEVELOPMENT 

We start with the inviscid transport equations written in 
cylindrical coordinates, 

^ + V.(up)    = 0 (1) 

5u p^^+pu-Vu    = -Vp (2) 

p— + pu ■ Ve    = —pV ■u + q. (3) 

We consider a combustor that has an annular shape and 
includes a circumferential array of bluff body flame holders, 
similar to that presented in [1]. Flameholders extend radially 
from inner to outer diameter of the annular combustor. A 
cut along a contant radius surface is shown in Figure 1. 
The thermo-acoustic system we consider is the linearized 

I  distritujtion 

Fig. L    A radial cross-section of a bluff body flameholder array in the 
tangential direction. 

momentum and pressure dynamics as derived by Culick [4]. 
We now list the assumptions used throughout the rest of this 
work: 

• Viscous effects are negligible. 
« All quantities are periodic in 6. 
• The acoustic medium is air and it acts as an ideal gas, 

with constant ratio of specific heats, 7. 
• The flow is non-conducting (i.e. the other transport 

terms appearing in [4] are negligible). 
• The steady density p{9), tangential velocity U0{6), 

and boundary admittance Y{9) are possibly spatially 
varying. 

• All other steady, mean quantities are spatially uniform. 
• The radial velocity perturbation MJ, is negligible on the 

interior of the domain. 
. Variations in the axial direction are negligible. 
• The heat-release and damping feedback are time- 

invariant. 
• The heat-release feedback is a scalar operation that 

depends only on the tangential acoustic velocity. 

By substitution of the ideal gas relation e = :rzi ^ and (1) 
we obtain 

(7-1) 
9e 

p-+pu.Ve 

dp     pdp 

di 
-I- u ■ Vp - ^u • Vp 

p at p 

^ + -V- (up) + u • Vp - 
at     p 

-u-Vp 

dp 
+ pV • u -f u • Vp. (4) 

Multiplying (3) by (7 - 1) and applying (4) results in 

-^ + u • Vp -f 7pV • u = (7 - l)q. (5) 
at 

The system (2,5) is the thermo-acoustic model that we 
focus on. Equations (2,5) are linearized about the steady 
pressure p, density p(0), and tangential velocity ue{9) 
where p is spatially uniform, and p(^) and ueiO) are 
possibly spatially varying in the tangential direction. For 
notational convenience, we drop the arguments [9) in the 
following equations. The linearized dynamics are 

dt r    89 r    ^     r dr 
(6) 

du'n pue du'g 

r   89 

pu'g due 

r   89 

pue I9p' 
r 89 

dp'     7p 8u'g     7p' 8ue     7p dru'^ 

dt       r   d9        r   89       r    dr 

r  89      ^^ 
l)q', 

^     (7) 

(8) 

For simplicity, we assume that u'^. is negligible on the 
interior of the domain, however, we retain that u'^ couples 
with the pressure on the outer boundary through a static 
boundary admittance relations (see e.g. [13]) 

Y{9)p, (9) 

where the argument {9) is included to indicate possible 
spatial variations in the boundary admittance. With the 
exception of the admittance relation (9), we assume that 
the contribution of the radial acoustic velocity coupling to 
the dynamics of the thermo-acoustic system is negligible, 
hence we will ignore (6). Note that further generalizations 
of this model can retain these dynamics. Also, note that a 
more general linear dynamic admittance condition could be 
easily handled by frequency domain techniques. 



We will assume some generic, normalized mode shape 
in the radial direction, ■tlj{r) which may be some weighted 
combination of Bessel functions, depending on the radial 
boundary conditions [4] . We assume that each quantity is 
written 

X{r,e,t) := X{e,tmr). 

We project the sysetm on to this radial mode. Integrating 
the term with u' in (8) results in 

Spatially Varying Parameters 

We expand all of the quantities in terms of Fourier modes 
{(p}„ where 

0„W = -i^e-. 

(19) 

So the pressure is expanded as 

P=^Pn,    Pn = {P,(l'n) 

L 
^2 Qfll' 

=     i>{R2)R2uUR2) 

=   i^iR2)R2Yp'{R2) 
=   i,{R2fR2Yv'{e,t),   (10) 

where we have applied (9) and the assumption that u'^ = 0 
on the interior. Equations (7) and (8) can be simplified to 

^ dt ~    R de     R de    Rde     ^ 

f+f^-¥t+*"'^)'«^^'>'<«'" 
ue dp' 

' R de 
+ (7-l)g',   (12) 

where (•,•) is the standard inner product on 1/2(0,2?:}. 
The coefficients (•)„ are defined similarly with respect to 
all of the other parameters in the model. We assume that 
the spatially varying parameters have period m around the 
circle in addtion to some mean quantity. Thus, we define 

m 
Ueo + UOm [^mid) + (t>-m{9)] 
£o + em[0mW + 0-m(e)] 

(20) 
(21) 

(22) 

We assume that the heat-release feedback is given by 
q{u) = Ku. The case where q{u) is nonlinear will be 
examined in section IV. The spatially varying heat-release 
gain is given by 

K{e) := Ko + Km [<Pm{0) + (t>-mm ■        (23) 

where R is the mean radius. For notational convenienc we 
define the normalized quantities 

-     P      ~     7 -1  /    -       / p= —, q= ^^-q, u = ug, 
IP IP 

i = ^p^{R2fR2Y. 

The speed of sound is given by 

a^ = :^. 

(13) 

(14) 

(15) 

Because p is possibly spatially varying, the speed of sound 
is also spatially varying and we write a? = o?{6). Note that 
p is now dimensionless and q has dimensions of [jj^]- We 
scale 9 as 

e-* Re, (16) 

so e now has dimensions of [length]. We apply (13-16) to 
(11,12) to result in the system 

du 

dp 

du .due I dp 
-"^M""^-"ae (17) 

,du0 
dt ^^'de 

dp     du     ,.     ,      ,,„, 

for e e  [0,27r). Equation (17) has units of 
equation (18) has units of [n^]. 

r length i and 

Galerkin Projection 

We are interested in the stability of the first tangential 
mode, and therefore we apply a Galerkin projection of the 
system (17, 18) on to the first Fourier modes -f 1, -1. We 
have [(j)m + 4>~m] [01 + 4>-l] = 0m+l + 0m-l + 0-m+l + 
0_m-i- Since we are focussing on the stability of the first 
mode only, we take m = 1 in the (20-23). This produces 
additional cross-coupling between mode 4-1 and mode —1. 

The Galerking truncation of the system (17, 18) is 

X = Ax. (24) 

where a; = [wi,U-i,pi,p_i]    and 

A-- 
-lUgg —iug2 "'"a 
IU92 lueo -la^ lag 

Ko-i K2 -lUoo - ?o mesCl -l)-i 
K2 Ko+i -iixe2(l -7) -C2 iueo - Co 

(25) 

III. LINEAR ANALYSIS OF SYMMETRY-BREAKING 

In this section we present some computational results that 
evaluate effect of various symmetry-braking concepts on the 
eigenvalues of (25). In the following computational results, 
nominal values, ^0 = 0.2, weo = 0.05, CQ = l,Ko = 0.5 
were used. In the following analysis, variations in the mean 
tangential flow had little effect on the stability of the system. 



Damping Variation 

Figure 2 shows the maximum real parts of the stable 
eigenvalues of A resulting from differenct combinations of 
fo and ^2- A value of zero in the figure indicates that all of 
the eigenvalues are in the right half of the complex plane. 
For a fixed value of uniform damping ^o. increasing £2 
decreases the overall damping of the system. Therefore, 
uniform damping is more effective than spatially varying 
damping. 

maximum real part of eigenvalues 

maximum real part of eigenvalues 

Fig. 2.   Maximum real parts of stable eigenvalues for varying $0 and ^2- 
A value of zero indicates that the linear system is unstable. 

Speed of Sound Variation 

Variation in the speed of sound is equivalent to changing 
the local resonance frequency. The results summarized in 
[2] show that such variations can be optimized to increase 
damping. Figure 3 shows the maximum real parts of the sta- 
ble eigenvalues of A resulting from differenct combinations 
of flg and al- The figure shows that increasing the spatial 
variation of the speed of sound has a comparable effect to 
increasing fo (Compare with Figure 2). We see that changes 
in al on the order of 10% of al have a significant effect 
on the stability of A. 

Heat-Release Gain Variation 

Spatial variations in the heat-release coupling is an exam- 
ple of dynamic symmetry-breaking in the system. In other 
words, it may be possible to change the dynamic heat- 
release coupling, while maintaining mean quantities, such 
as temperature, density, etc. Figure 4 shows a root locus 
plot of the eigenvalues resulting from variations in K2 and 
KQ. We see that increasing the spatial variation of the heat- 
release gain moves two eigenvalues to the left and moves 
the other two eigenvalues to the right. A contour plot similar 
to Figure 3 can be obtained for general combinations of K2 
for a constant KQ. 

Fig. 3.   Maximum real parts of stable eigenvalues for varying a§ and aj ■ 
A value of zero indicates that the linear system is unstable. 

K, =0.375, varyino K^ 
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Fig. 4. Root locus plot showing eigenvalues for varying values of 
K2- Eigenvalues corresponding with K'2 = 0 are shown in blue, and 
eigenvalues corresponding with K2 = 0.5 are shown in blue. 

IV. UNCERTAINTY PROPAGATION 

We analyze uncertainty propagation with respect to the 
uncertainty measure, denoted by v{-), recently defined in 
[12]. For the present study, the output observable of interest 
is the amplitude of oscillation of the first tangential pres- 
sure mode. We denote by ro(p) the resulting probability 
distribution of the pressure amplitude which results from 
a given distribution of uncertain model parameters. The 
uncertainty measure is therefore denoted by v{rx:). For the 
case of no uncertainty (all model parameters are exactly 
known) the resulting probability distribution will be a dirac- 
delta function and the resulting uncertainty metric will be 
v{vj) = 0. 

As an example, we examine uncertainty propagation with 
respect to the measure ro(p), that results from uncertain 
spatially varying sound speed, a^ with different, fixed and 
certain, values of mean heat-release gain KQ. Similar results 
can be obtained for all of the other combinations of model 
parameters. Figure 5 shows the maximum real parts of the 
stable eigenvalues of A, with nominal values 0^ = 1,^0 = 



0.2. We examine cases with KQ varying from 0.1 to 0.35 
where 02 is uncertain and may be up to 20% of OQ. 

We compute the resulting uncertainty metric as defined 
in [12], 

V2{rv) = min|iu - J^la, 

where | • I2 denotes the L^-norm on the space M of 
probabilistic measure on K. It is convenient to use the cumu- 
lative distribution function F^ to compute the uncertainty 
measure. In this case, since F^{p) is continuous, it can be 
shown that the uncertainty measure can be computed by 

Histograms (bars) and Cumulative Distribution Functions (lines) 

V2{w)=  il F^x) - dx (26) 

We present the results of Monte-Carlo simulations of 
the PDE system (17, 18) where the heat-release coupling 
includes a saturation effect. From the analysis of the trun- 
cated model and Figure 5, we see that as KQ increases, the 
system approaches the linear stability boundary, and hence, 
the amplitude should increase. 

maximum real part of eigenvalues 

■ K„=0.1 
K„=0.15 

|iK„=0.2 
— K„=0.25 

K„=0.3 
K„=0.35 

M 

Amplitude 

Fig. 6.     Histograms and cumulative distribution functions of resulting 
amplitudes of oscillation for varying Ko and uncertainty in Oj. 

where the amplitude of oscillation is determined by the 
saturation nonlinearity and the amount of damping. 

Figure 7 shows the values of the uncertainty metric based 
on the observable of pressure amplitude corresponding with 
different values of KQ and uncertainty in 0.2 up to 20% 
of OQ. We see that the lowest amount of uncertainty in 
the amplitude correspond with the highly stable cases. The 
uncertainty measure increases as the system approaches 
the stability boundary. The highest amount of uncertainty 
occurs near the linear stability boundary of A. However, 
for high values of Ko, the uncertainty propagation of a^ to 
the pressure amplitude is actually decreased. We conjecture 
that the increased stability of the limit cycle explains the 
reduced uncertainty measure for the limit-cycling cases. 
An analytic study to investigate the relationship between a 
measure of hyperbolicity of the dynamics and the measure 
of uncetrainty is currently in progress. 

Fig. 5.     Maximum real parts of stable eigenvalues. A value of zero 
indicates that the linear system is unstable. 

The resulting distributions w(p) (shown as bars) and 
the respective normalized cumulative distribution functions 
Fza{p) (shown as lines) of the pressure amplitude are shown 
in Figure 6, for the nominal heat-release gain KQ ranging 
from 0.1 to 0.35. For small vales of KQ the system is 
linearly stable and therefore, all of the resulting amplitudes 
are zero. Therefore, the distribution of amplitudes for these 
cases is a delta function at zero. Because of this, the 
uncertainty propagation in terms of the metric (26) is also 
zero. As KQ increases, the system approaches the linear 
stability limit, and the resulting distribution of amplitudes 
has a wider range. Therefore the uncertainty propagation 
corresponding with these cases is larger. When KQ increases 
beyond the stability limit, the system enters a limit-cycle 

Ki 1 
9.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 

K„ 

Fig. 7.    Uncertainty metric v{zu) versus KQ- 



V. CONCLUSION 

We have presented a simple one-dimensional thermo- 
acoustic model that is adequate for modeling oscillations 
of tangential acoustic modes. The model has been derived 
allowing for some spatially-varying parameters. We have 
investigated the effects of symmetry-breaking, or the delib- 
erate introduction of spatial-variations in system parameters, 
on the system's linear stability properties. It was found that 
spatial variations in the steady tangential flow and damping 
do not enhance stability. Variations in the local speed 
of sound and the heat-release coupling gains significantly 
affects system damping. An example of uncertainty propa- 
gation through this system was presented in the context of 
spatially varying, uncertain, speed of sound, with varying 
levels of mean heat-release coupling. In this example, the 
uncertainty propagation given in terms of an uncertainty 
measure depending on the resulting distribution of the pres- 
sure amplitude, was the lowest for the limit-cycling case. 
An analytic study to investigate the relationship between a 
measure of hyperbolicity of the dynamics and the measure 
of uncetrainty is currently in progress. 
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